【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示,其中A組為t0.5h,B組為0.5ht1h,C組為1ht1.5h,D組為t1.5h.

請根據(jù)上述信息解答下列問題:

(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);

(2)該轄區(qū)約有18000名初中學(xué)生,請你估計其中達到國家規(guī)定體育活動時間的人數(shù).

【答案】(1)B,C;(2)960

【解析】

試題分析:(1)根據(jù)中位數(shù)的概念,中位數(shù)應(yīng)是第150、151人時間的平均數(shù),分析可得答案;

(2)首先計算樣本中達到國家規(guī)定體育活動時間的頻率,再進一步估計總體達到國家規(guī)定體育活動時間的人數(shù).

試題解析:(1)眾數(shù)在B組.

根據(jù)中位數(shù)的概念,中位數(shù)應(yīng)是第150、151人時間的平均數(shù),分析可得其均在C組,故本次調(diào)查數(shù)據(jù)的中位數(shù)落在C組.

故答案為:B,C;

(2)達國家規(guī)定體育活動時間的人數(shù)約1800×=960(人).

答:達國家規(guī)定體育活動時間的人約有960人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的的方格紙中,如果想作格點相似(相似比不能為1),則點坐標為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與y軸交于點C,與x軸交于AB兩點,其中點B的坐標為B4,0),拋物線的對稱軸交x軸于點D,CEAB,并與拋物線的對稱軸交于點E.現(xiàn)有下列結(jié)論:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正確結(jié)論的序號是( 。

A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:拋物線yax+1)(x3)與x軸相交于A、B兩點,與y軸的交于點C0,﹣3).

1)求拋物線的解析式的一般式.

2)若拋物線上有一點P,滿足∠ACO=∠PCB,求P點坐標.

3)直線lykxk+2與拋物線交于EF兩點,當點B到直線l的距離最大時,求BEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠C90°

1)請你用沒有刻度的直尺和圓規(guī),在線段AB上找一點F,使得點F到邊AC的距離等于FB.(注:不寫作法,保留作圖痕跡,對圖中涉及到的點的用字母進行標注)

2)在(1)的情況下,若BC5,AC12,則AF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點,交軸于點,點的坐標為,直線經(jīng)過點.

1)求拋物線的函數(shù)表達式;

2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標;

3)過點的直線交直線于點,連接,當直線與直線的一個夾角等于3倍時,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果(千克),增種果樹(棵), 它們之間的函數(shù)關(guān)系如圖所示.

1)求之間的函數(shù)關(guān)系式;

2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P在函數(shù)yx0)的圖象上從左向右運動,PAy軸,交函數(shù)y=﹣x0)的圖象于點AABx軸交PO的延長線于點B,則△PAB的面積( 。

A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過AB的中點D,連接ACCD.則下列結(jié)論中錯誤的是( 。

ACCD;②ADBD;③+;④CD平分∠ACB

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案