【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

【答案】
(1)解:∵二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),

∴根據(jù)題意,得

解得 ,

∴拋物線的解析式為y=﹣x2+2x+3.


(2)解:由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D點坐標為(1,4),

∴CD= = ,

BC= =3 ,

BD= =2 ,

∵CD2+BC2=( 2+(3 2=20,BD2=(2 2=20,

∴CD2+BC2=BD2,

∴△BCD是直角三角形;


(3)解:存在.

y=﹣x2+2x+3對稱軸為直線x=1.

①若以CD為底邊,則P1D=P1C,

設(shè)P1點坐標為(x,y),根據(jù)勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2

因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,

即y=4﹣x.

又P1點(x,y)在拋物線上,

∴4﹣x=﹣x2+2x+3,

即x2﹣3x+1=0,

解得x1= ,x2= <1,應(yīng)舍去,

∴x= ,

∴y=4﹣x=

即點P1坐標為( , ).

②若以CD為一腰,

∵點P2在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點P2與點C關(guān)于直線x=1對稱,

此時點P2坐標為(2,3).

∴符合條件的點P坐標為( , )或(2,3).


【解析】(1)將A(﹣1,0)、B(3,0)代入二次函數(shù)y=ax2+bx﹣3a求得a、b的值即可確定二次函數(shù)的解析式;(2)分別求得線段BC、CD、BD的長,利用勾股定理的逆定理進行判定即可;(3)分以CD為底和以CD為腰兩種情況討論.運用兩點間距離公式建立起P點橫坐標和縱坐標之間的關(guān)系,再結(jié)合拋物線解析式即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2 ,AD=4,點E是BC邊上一個動點,連接AE,作DF⊥AE于點F,當(dāng)BE的長為時,△CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.

(1)如圖1,若點O在邊BC上,求證:∠ABC=∠ACB;

(2)如圖2,若點O在△ABC的內(nèi)部,則∠ABC=∠ACB成立嗎?并說明理由;

(3)若點O在△ABC的外部,則∠ABC=∠ACB成立嗎?請畫圖表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦了一次成語知識競賽,滿分10分,學(xué)生得分均為整數(shù),成績達到6分及6分以上為合格,達到9分或10分為優(yōu)秀. 為了解本次大賽的成績,校團委隨機抽取了甲、乙兩組學(xué)生成績作為樣本進行統(tǒng)計,繪制了如下統(tǒng)計圖表:

組別

平均數(shù)

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.8

a

3.76

90%

30%

乙組

b

7.5

1.96

80%

20%

1)求出表中a,b的值;

2)小英同學(xué)說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面的表格判斷,小英屬于哪個組?

3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組. 但乙組同學(xué)不同意甲組同學(xué)的說法,認為他們組的成績要好于甲組.請你寫出兩條支持乙組同學(xué)觀點的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

如圖,點E,F在BC上,BE=CF,A=D,B=C,AF與DE交于點O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

如圖所示,直線ADAB,CD分別相交于點AD,與ECBF分別相交于點H,G,已知∠1=∠2,∠B=∠C

求證:∠A=∠D

證明:∵∠1=∠2,(已知)∠2=∠AGB   

∴∠1      

ECBF   

∴∠B=∠AEC   

又∵∠B=∠C(已知)

∴∠AEC      

      

∴∠A=∠D   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標軸分別交于點E,F(xiàn),與雙曲線y=﹣
(x<0)交于點P(﹣1,n),且F是PE的中點.

(1)求直線l的解析式;
(2)若直線x=a與l交于點A,與雙曲線交于點B(不同于A),
①當(dāng)a為何值時,△ABP是以點P為直角頂點的直角三角形?
②當(dāng)a為何值時,PA=PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本上有這樣一道例題:

例 已知等腰三角形底邊長為a, 底邊上的高的長為h,求作這個等腰三角.

作法:(1)作線段AB=a,

(2)作線段AB的垂直平分線MN,與AB相交于點D,

(3)在MN上取一點C,使DC=h,

(4)連接AC,BC,則△ABC就是所求作的等腰三角形.

請你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依據(jù)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.

查看答案和解析>>

同步練習(xí)冊答案