【題目】知關(guān)于一元二次方程.

(1)求證:對(duì)于任意實(shí)數(shù)方程都有實(shí)數(shù)根;

(2)當(dāng)何值時(shí),方程的兩個(gè)根互為相反數(shù)?請(qǐng)說明理由.

【答案】(1解析;(21,理由見解析.

【解析】

試題分析:(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出=(t﹣3)20,由此可證出:對(duì)于任意實(shí)數(shù)t,方程都有實(shí)數(shù)根;

(2)設(shè)方程的兩根分別為m、n,由方程的兩根為相反數(shù)結(jié)合根與系數(shù)的關(guān)系,即可得出m+n=t﹣1=0,解之即可得出結(jié)論.

試題解析:(1)證明:在方程x2﹣(t﹣1)x+t﹣2=0中,=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)20,對(duì)于任意實(shí)數(shù)t,方程都有實(shí)數(shù)根;

(2)解:設(shè)方程的兩根分別為m、n,

方程的兩個(gè)根互為相反數(shù),m+n=t﹣1=0,解得:t=1.

當(dāng)t=1時(shí),方程的兩個(gè)根互為相反數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小騰遇到這樣一個(gè)問題:如圖1,在中,點(diǎn)在線段上.,,,.求的長(zhǎng).

小騰發(fā)現(xiàn),過點(diǎn),交的延長(zhǎng)線于點(diǎn),通過構(gòu)造,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).

發(fā)現(xiàn):的度數(shù)為 ,的長(zhǎng)為

探究:參考小騰思考問題的方法,解決問題:

如圖3,在四邊形中,,,,交于點(diǎn),,求,的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)MN同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,如果正方形PQMN的邊QMBC上,頂點(diǎn)PN分別在AB,AC上,那么我們稱這樣的正方形為“三角形內(nèi)接正方形”小波同學(xué)按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖(2),任意畫△ABC,在AB上任取一點(diǎn)P′,畫正方形PQMN′,使Q′,M′在BC邊上,N′在△ABC內(nèi),連結(jié)BN′并延長(zhǎng)交AC于點(diǎn)N,畫NMBC于點(diǎn)M,NPNMAB于點(diǎn)P,PQBC于點(diǎn)Q,得到四邊形PQMN,小波把線段BN稱為“波利亞線”,請(qǐng)幫助小波解決下列問題:

1)四邊形PQMN是否是△ABC的內(nèi)接正方形,請(qǐng)證明你的結(jié)論;

2)若△ABC為等邊三角形,邊長(zhǎng)BC6,求△ABC內(nèi)接正方形的邊長(zhǎng);

3)如圖(3),若在“波利亞線”BN上截取NENM,連結(jié)EQ,EM.當(dāng)時(shí),猜想∠QEM的度數(shù),并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),

1)求一次函數(shù)的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為元,試寫出利潤(rùn)與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

3)若該商場(chǎng)獲得利潤(rùn)不低于500元,試確定銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).直線與拋物線同時(shí)經(jīng)過.

1)求的值.

2)點(diǎn)是二次函數(shù)圖象上一點(diǎn),(點(diǎn)下方),過軸,與交于點(diǎn),與軸交于點(diǎn).的最大值.

3)在(2)的條件下,是否存在點(diǎn),使相似?若存在,求出點(diǎn)坐標(biāo),不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:對(duì)于拋物線y,以y軸上的點(diǎn)M(0,m)為中心,作該拋物線關(guān)于點(diǎn)M對(duì)稱的拋物線y′,則我們稱拋物線y′為拋物線y關(guān)于點(diǎn)M(0,m)衍生拋物線,點(diǎn)M衍生中心

(1)求拋物線y=x2-2關(guān)于原點(diǎn)O(0,0)的衍生拋物線的解析式.

(2)已知拋物線y=ax2+2ax-b(a≠0)

若拋物線y的衍生拋物線為y′=bx2-2bx+a2(b≠0),兩拋物線有兩個(gè)交點(diǎn),且恰好是它們的頂點(diǎn),求a、b的值及衍生中心的坐標(biāo);

若拋物線y關(guān)于點(diǎn)(0,k+12)的衍生拋物線為y1,其頂點(diǎn)為A1;關(guān)于點(diǎn)(0,k+22)的衍生拋物線為y2,其頂點(diǎn)為A2……;關(guān)于點(diǎn)(0,k+n2)的衍生拋物線為yn,其頂點(diǎn)為An…(n為正整數(shù)).求AnAn+1的長(zhǎng)(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的紙箱里有分別標(biāo)有漢字”“”“”“國(guó)的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先搖勻再摸球.

1)若從中任取一個(gè)球,求摸出球上的漢字剛好是國(guó)字的概率;

2)小紅從中任取球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹狀圖或列表法,求小紅取出的兩個(gè)球上的漢字恰好能組成愛國(guó)祖國(guó)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天晚上,小穎由路燈A下的B處向正東走到C處時(shí),測(cè)得影子CD的長(zhǎng)為1米.當(dāng)她繼續(xù)向正東走到D處時(shí),測(cè)得此時(shí)影子DE的一端E到路燈A的仰角為45°.已知小穎的身高為1.5米,那么路燈AB的高度是多少米?(

A.4B.4.5C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案