【題目】如圖,點P、M、N分別在等邊△ABC的各邊上,且MP⊥AB于點P,MN⊥BC于點M,PV⊥AC于點N,若AB=12cm,求CM的長為______cm.
【答案】4
【解析】
根據(jù)等邊三角形的性質得出∠A=∠B=∠C,進而得出∠MPB=∠NMC=∠PNA=90°,根據(jù)平角的義即可得出∠NPM=∠PMN=∠MNP,即可證△PMN是等邊三角形:根據(jù)全等三角形的性質得到PA=BM=CN,PB=MC=AN,從而求得MC+NC=AC=12cm,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半得出2MC=NC,即司得MC的長.
∵△ABC是等邊三角形,∴∠A=∠B=∠C.
∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,
∴∠PMB=∠MNC=∠APN,∠NPM=∠PMN=∠MNP,
∴△PMN是等邊三角形∴PN=PM=MN,∴△PBM≌△MCN≌△NAP(AAS),
∴PA=BM=CN,PB=MC=AN,MC+NC=AC=12cm,
∵∠C=60°,∴∠MNC=30°,
∴NC=2CM,∴MC+NC=3CM=12cm,∴CM=4cm.
故答案為:4cm
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃選購、兩種圖書.已知種圖書每本價格是種圖書每本價格的2.5倍,用1200元單獨購買種圖書比用1500元單獨購買種圖書要少25本.
(1)、兩種圖書每本價格分別為多少元?
(2)如果該學校計劃購買種圖書的本數(shù)比購買種圖書本數(shù)的2倍多8本,且用于購買、兩種圖書的總經(jīng)費不超過1164元,那么該學校最多可以購買多少本種圖書?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從一副52張(沒有大小王)的撲克牌中,每次抽出1張,然后放回洗勻再抽,在試驗中得到下表中部分數(shù)據(jù):
(1)將數(shù)據(jù)表補充完整;
(2)從上表中可以估計出現(xiàn)方塊的概率是________(精確到0.01);
(3)從這副撲克牌中取出兩組牌,分別是方塊1,2,3和紅桃1,2,3,將它們背面朝上分別重新洗牌后,從兩組牌中各摸出一張,若摸出的兩張牌的牌面數(shù)字之和等于3,則甲方贏;若摸出的兩張牌的牌面數(shù)字之和等于4,則乙方贏.你認為這個游戲對雙方是公平的嗎?若不是,有利于誰?請你用概率知識(列表法或畫樹狀圖法)加以分析說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,A,D,E在同一直線上,BD =AE, BC∥EF, 要使△ABC≌△DEF則需要添加一個適當?shù)臈l件是______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用兩個全等的等邊△ABC和△ACD拼成菱形ABCD.把一個含60°角的三角尺與這個菱形疊合,使三角尺60°角的項點與點A重合,兩邊分別與AB、AC重合,將三角尺繞點A按逆時針方向旋轉.當三角尺的兩邊分別與菱形的兩邊BC、CD相交于點E、F時(如圖),通過觀察或測量BE、CF的長度,你能得出什么結論?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點C旋轉。當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是 ;
② 設△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關系是 。
(2)猜想論證
當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF =S△BDC,請直接寫出相應的BF的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列結論中,錯誤的有( )
①在Rt△ABC中,已知兩邊長分別為3和4,則第三邊的長為5;
②△ABC的三邊長分別為AB,BC,AC,若+=,則∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;
④若三角形的三邊長之比為3:4:5,則該三角形是直角三角形.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com