【題目】如圖,四邊形是矩形
(1)如圖1,、分別是、上的點,,垂足為,連接.
①求證:;
②若為的中點,求證:;
(2)如圖2,將矩形沿折疊,點落在點處,點落在邊的點處,連接交于點,是的中點.若,,直接寫出的最小值為 .
【答案】(1) ①見解析;②見解析;(2)
【解析】
(1)①證明△FBC∽△ECD可得結(jié)論.
②想辦法證明∠AEB=∠AGB,可得sin∠AGB=sin∠AEB=.
(2)如圖2中,取AB的中點T,連接PT,CP.因為四邊形MNSR與四邊形MNBA關(guān)于MN對稱,T是AB中點,Q是SR中點,所以PT=PQ,MN垂直平分線段BS,推出BP=PS,由∠BCS=90°,推出PC=PS=PB,推出PQ+PS=PT+PC,當(dāng)T,P,C共線時,PQ+PS的值最。
(1)①證明:如圖1中,
∵四邊形ABCD是矩形,
∴∠CDE=∥BCF=90°,
∵BF⊥CE,
∴∠BGC=90°,
∴∠BCG+∠FBC=∠BCG+∠ECD=90°,
∴∠FBC=∠ECD,
∴△FBC∽△ECD,
∴.
②證明:如圖1中,連接BE,GD.
∵BF⊥CE,EG=CG,
∴BF垂直平分線段EC,
∴BE=CB,∠EBG=∠CBG,
∵DG=CG,
∴∠CDG=∠GCD,
∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,
∴∠ADG=∠BCG,
∵AD=BC,
∴△ADG≌△BCG(SAS),
∴∠DAG=∠CBG,
∴∠DAG=∠EBG,
∴∠AEB=∠AGB,
∴sin∠AGB=sin∠AEB=
(2)如圖2中,取AB的中點T,連接PT,CP.
∵四邊形MNSR與四邊形MNBA關(guān)于MN對稱,T是AB中點,Q是SR中點,
∴PT=PQ,MN垂直平分線段BS,
∴BP=PS,
∵∠BCS=90°,
∴PC=PS=PB,
∴PQ+PS=PT+PC,
當(dāng)T,P,C共線時,PQ+PS的值最小,最小值=,
∴PQ+PS的最小值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點,點 的坐標(biāo)分別是,與軸交于點.點在第一、二象限的拋物線上,過點作軸的平行線分別交軸和直線于點、.設(shè)點的橫坐標(biāo)為,線段的長度為.
⑴求這條拋物線對應(yīng)的函數(shù)表達(dá)式;
⑵當(dāng)點在第一象限的拋物線上時,求與之間的函數(shù)關(guān)系式;
⑶在⑵的條件下,當(dāng)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與兩坐標(biāo)軸分別交于M、N兩點,過點O作,過作,得陰影;再過作,過作,得陰影;……如此進(jìn)行下去,則得到的所有陰影三角形的面積之和為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方方駕駛小汽車勻速地從A地行使到B地,行駛里程為480千米,設(shè)小汽車的行使時間為t(單位:小時),行使速度為v(單位:千米/小時),且全程速度限定為不超過120千米/小時.
⑴求v關(guān)于t的函數(shù)表達(dá)式;
⑵方方上午8點駕駛小汽車從A出發(fā).
①方方需在當(dāng)天12點48分至14點(含12點48分和14點)間到達(dá)B地,求小汽車行駛速度v的范圍.
②方方能否在當(dāng)天11點30分前到達(dá)B地?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)為常數(shù),中的與的部分對應(yīng)值如下表:
x | -1 | 0 | 3 |
y | n | -3 | -3 |
當(dāng)時,下列結(jié)論中一定正確的是________(填序號即可)
①;②當(dāng)時,的值隨值的增大而增大;③;④當(dāng)時,關(guān)于的一元二次方程的解是,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)(k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點,BC⊥x軸于點C,若△OBC的面積為2,且A點的縱坐標(biāo)為4,B點的縱坐標(biāo)為1.
(1)求反比例函數(shù)、一次函數(shù)的表達(dá)式及直線AB與x軸交點E的坐標(biāo);
(2)已知點D(t,0)(t>0),過點D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點P,與反比函數(shù)上的圖像相交于點Q,若點P位于點Q的上方,請結(jié)合函數(shù)圖像直接寫出此時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,李亮就本班同學(xué)“我最喜愛的體育項目”進(jìn)行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題;
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生;
(2)通過計算,補(bǔ)全條形統(tǒng)計圖;
(3)若全校有1330名學(xué)生,請估計出“其他”部分的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育組為了了解九年級450名學(xué)生排球墊球的情況,隨機(jī)抽查了九年級部分學(xué)生進(jìn)行排球墊球測試(單位:個),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計圖表:
組別 | 個數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級排球墊球測試結(jié)果小于10的人數(shù);
(3)排球墊球測試結(jié)果小于10的為不達(dá)標(biāo),若不達(dá)標(biāo)的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機(jī)選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與的圖象如圖所示,下列說法:①;②函數(shù)不經(jīng)過第一象限;③不等式的解集是;④.其中正確的個數(shù)有( )
A.4B.3C.2D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com