【題目】綜合與實踐

問題解決:

如圖1,已知正方形,,把含)的直角三角板的一個銳角頂點和點重合,三角板和正方形的,兩邊分別相交于,兩點.

1)當時,求的長;

探究發(fā)現(xiàn):

2)在圖1的基礎上,試探究,,有怎樣的數(shù)量關系,請寫出猜想,并給予證明.

類比延伸:

3)如圖2,若三角板和正方形兩邊的延長線分別相交于,兩點,請直接寫出,,存在的數(shù)量關系.

【答案】1;(2;證明見解析;(3

【解析】

1)直接利用勾股定理,即可求出AM的長度;

2)延長到點,使得,連接.先證明,得到,然后得到,再證明,即可得到結論成立.

3)在CN上截取CE=AM,連接ME,先證明△BCE≌△ABM,然后得到△MBE為等腰直角三角形,再根據(jù)垂直平分線的性質,線段的和差關系,即可得到結論.

解:(1)∵四邊形為正方形,

,

,

2)猜想:

證明:延長到點,使得,連接

中,

,

,,

,

中,

,

,

3)在CN上截取CE=AM,連接ME

BC=AB,∠BAM=C=90°,

∴△BCE≌△BAM

BE=BM,∠ABM=CBE,

∵∠MBN=45°,∠ABC=90°,

∴∠MBE=90°,△MBE為等腰直角三角形,

BN垂直ME,

BNME垂直平分線,

NM=NE

CN-AM=CN-CE=NE=MN,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學學習過程中,通常是利用已有的知識與經(jīng)驗,通過對研究對象進行觀察、實驗、推理、抽象概括,發(fā)現(xiàn)數(shù)學規(guī)律,揭示研究對象的本質特征.比如在學習“同底數(shù)冪的乘法法則”過程中,利用有理數(shù)的乘方概念和乘法結合律,可由“特殊”抽象概括出“一般”,具體如下22×2325,23×2427,22×2628…→2m2n2m+n…→amanam+nm、n都是正整數(shù))我們亦知: , ,

1)請你根據(jù)上面的材料,用字母a、b、c歸納出a、b、cab0,c0)之間的一個數(shù)學關系式.

2)請嘗試說明(1)中關系式的正確性.

3)試用(1)中你歸納的數(shù)學關系式,解釋下面生活中的一個現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某校初中各年級學生每天的平均睡眠時間(單位:,精確到,抽樣調查了部分學生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中提供的信息,回答下列問題:

1)求出扇形統(tǒng)計圖中百分數(shù)的值為_____,所抽查的學生人數(shù)為______

2)求出平均睡眠時間為8小時的人數(shù),并補全條形統(tǒng)計圖.

3)求出這部分學生的平均睡眠時間的眾數(shù)和平均數(shù).

4)如果該校共有學生1800名,請你估計睡眠不足(少于8小時)的學生數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列不等式()

13x+85x-12

22x1xx5,并寫出它的所有整數(shù)解.

3

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假降至,丹尼斯大賣場為回饋新老顧客,進行有獎促銷活動活動. 活動規(guī)定:購買500元的商品就可以獲得一次轉轉盤的機會(轉盤分為5個區(qū)域,分別是特等獎、一等獎、二等獎、三等獎、不獲獎),轉盤指針停在哪個獲獎區(qū)域就可以得到該區(qū)域相應等級獎品一件(如果指針恰好停在分割線上,那么重轉一次,直到指針指向某一區(qū)域為止). 大賣場工作人員在制作轉盤時,將各扇形區(qū)域圓心角(不完全)分配如下表:

獎次

特等獎

一等獎

二等獎

三等獎

不獲獎

圓心角

_________

促銷公告:凡購買我大賣場商品500元均有可能獲得下列獎品:

特等獎:山地越野自行車一輛 一等獎:雙肩背包一個

二等獎:洗衣液一桶 三等獎:抽紙一盒

根據(jù)以上信息,解答下列問題:

1)求不獲獎的扇形區(qū)域圓心角度數(shù)是多少?

2)求獲得雙肩背包的概率是多少?

3)甲顧客購物520元,求他獲獎的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線ACBD相交于點O,設銳角∠AOBα,將△DOC按逆時針方向旋轉得到△D′OC′<旋轉角<90°)連接AC′、BD′,AC′BD′相交于點M

(1)、當四邊形ABCD為矩形時,如圖1.求證:△AOC′≌△BOD′

(2)、當四邊形ABCD為平行四邊形時,設ACkBD,如圖2

猜想此時△AOC′△BOD′有何關系,證明你的猜想;

探究AC′BD′的數(shù)量關系以及∠AMBα的大小關系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,∠A40°.點P是射線AB上一動點(與點A不重合),CECF分別平分∠ACP和∠DCP交射線AB于點E、F

(1)求∠ECF的度數(shù);

(2)隨著點P的運動,∠APC與∠AFC之間的數(shù)量關系是否改變?若不改變,請求出此數(shù)量關系;若改變,請說明理由;

(3)當∠AEC=∠ACF時,求∠APC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,中點,過點的直線分別與,交于點,,連接于點,連接,.若,,則下列結論:

;

;

四邊形是菱形;

其中正確結論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校舉辦大愛鎮(zhèn)江征文活動,小明為此次活動設計了一個以三座山為背景的圖標(如圖),現(xiàn)用紅、黃兩種顏色對圖標中的AB、C三塊三角形區(qū)域分別涂色,一塊區(qū)域只涂一種顏色.

1)請用樹狀圖列出所有涂色的可能結果;

2)求這三塊三角形區(qū)域中所涂顏色是兩塊黃色、一塊紅色的概率.

查看答案和解析>>

同步練習冊答案