【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)(k>0,x>0)的圖象經(jīng)過AC的中點D,則k的值為( )
A.8B.5C.6D.4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,OB⊥CD交⊙O于點B,連接CB,AB是⊙O的弦,AB交CD于點E,F是CD的延長線上一點且AF=EF.
(1)判斷AF和⊙O的位置關(guān)系并說明理由.
(2)若∠ABC=60°,BC=1cm,求陰影部分的面積.(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,RtΔABC中∠C=90°,∠ABC=30°,ΔABC繞點C順時針旋轉(zhuǎn)得ΔA1B1C,當(dāng)A1落在AB上時,連接B1B,取B1B的中點D,連接A1D,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,D為AB上一點,連接CD,將CD繞點C 順時針旋轉(zhuǎn)90°至CE,連接AE.
(1)求證:△BCD≌△ACE;
(2)如圖2,連接ED,若CD=,AE=1,求AB的長;
(3)如圖3,若點F為AD的中點,分別連接EB和CF,求證:CF⊥EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗中學(xué)為了獎勵在學(xué)!对娫~大會》上獲獎的同學(xué),計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.
(1)如果購買甲、乙兩種獎品共花費650元,求甲、乙兩種獎品各購買了多少件.
(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求學(xué)校有幾種不同的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,C90,點D是AB邊上一點,以BD為直徑的⊙O與邊AC相切于點E,與邊BC交于點F,過點E作EHAB于點H,連結(jié)BE.
(1)求證:BCBH;
(2)若AB5,AC4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.
(2)若已確定甲打第一場,再從其余三位同學(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校“心靈信箱”的設(shè)立,為師、生之間的溝通開設(shè)了一個書面交流的渠道.為了解九年級學(xué)生對“心靈信箱”開通兩年來的使用情況,某課題組對該校九年級全體學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)圖表,解答以下問題:
(1)該校九年級學(xué)生共有 人;
(2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計圖中,扇形D的圓心角度數(shù)是 ;
(3)請你補(bǔ)充條形統(tǒng)計圖;
(4)根據(jù)調(diào)查結(jié)果可以推斷:兩年來,該校九年級學(xué)生通過“心靈信箱”投遞出的信件總數(shù)至少有 封.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會利用一些變形技巧來簡化式子,解答問題.
材料一:在解決某些分式問題時,倒數(shù)法是常用的變形技巧之一.所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運用約分化簡,以達(dá)到計算目的.
例:已知:,求代數(shù)式的值.
解:∵,∴
即,∴,∴.
材料二:在解決某些連等式問題時,通常可以引入?yún)?shù)“k”,將連等式變成幾個值為k的等式,這樣就可以通過適當(dāng)變形解決問題.
例:若2x=3y=4z,且xyz≠0,求的值.
解:令2x=3y=4z=k(k≠0)
則,,,∴
根據(jù)材料回答問題:
(1)已知,則= ;
(2)解分式方程組:;
(3)若,x≠0,y≠0,z≠0,且abc=5,求xyz的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com