【題目】計(jì)算

(1)﹣5+3﹣2

(2)﹣20﹣(﹣18)+(﹣14)+13

(3)5.6+(﹣0.9)+4.4+(﹣8.1)

(4)(+ )﹣+(﹣

【答案】(1)-4;(2)-3;(3)1;(4)-2;

【解析】

(1)先同號(hào)相加,再異號(hào)相加;

(2)先化簡,再計(jì)算加減法;

(3)根據(jù)加法交換律和結(jié)合律計(jì)算即可求解;

(4)根據(jù)加法交換律和結(jié)合律計(jì)算即可求解.

(1)解:﹣5+3﹣2 =﹣7+3=﹣4;

(2)解:﹣20﹣(﹣18)+(﹣14)+13 =﹣20+18﹣14+13=﹣34+31=﹣3;

(3)解:5.6+(﹣0.9)+4.4+(﹣8.1) =(5.6+4.4)+(﹣0.9﹣8.1)=10﹣9=1;

(4)解:(+)﹣+(﹣)=(+)+(﹣)=﹣1﹣1=﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費(fèi)的價(jià)目表如下表(注:水費(fèi)按月份結(jié)算,表示立方米):

價(jià)目表

每月用水量

單價(jià)

不超出的部分

超出不超出的部分

超出的部分

注:水費(fèi)按月結(jié)算

例:若某戶居民月份用水,應(yīng)收水費(fèi)為(元).

請(qǐng)根據(jù)上表的內(nèi)容解答下列問題:

填空:若該戶居民月份用水,則應(yīng)收水費(fèi)________元;

若該戶居民月份用水(其中),則應(yīng)收水費(fèi)多少元?(用含的表示,并化簡)

若該戶居民,兩個(gè)月共用水月份用水量超過了月份),設(shè)月份用水,求該戶居民,兩個(gè)月共交水費(fèi)多少元?(用含的表示,并化簡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,已知下列6個(gè)條件:①ABDC;AB=DC;AC=BD;④∠ABC=90°;OA=OC;OB=OD.則不能使四邊形ABCD成為矩形的是( 。

A. ①②③ B. ②③④ C. ②⑤⑥ D. ④⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是拋物線y=2(x﹣2)2對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行y軸,分別與y=x、拋物線交于點(diǎn)A,B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)同學(xué)到距學(xué)校6km的郊外游玩,一部分同學(xué)步行,另一部分同學(xué)騎車。如圖, 分別表示步行和騎車的同學(xué)前往目的地所走的路程y(km)與所用的時(shí)間x(min)之間的函數(shù)圖像,則下列判斷錯(cuò)誤的是

A. 騎車的同學(xué)比步行的同學(xué)晚出發(fā)30min

B. 步行的同學(xué)的速度是6km/h

C. 騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20min

D. 騎車的同學(xué)和步行的同學(xué)同時(shí)到達(dá)目的地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x<50

50≤x≤90

售價(jià)(元/件)

x+40

90

每天銷量(件)

200﹣2x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠A=60°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A1B1C,斜邊A1B1與CB相交于點(diǎn)D,且DC=AC,則旋轉(zhuǎn)角∠ACA1等于(

A.20°
B.25°
C.30°
D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A1B1C,旋轉(zhuǎn)角為ɑ(0°<ɑ<90°),連接BB1 . 設(shè)CB1交AB于點(diǎn)D,A1B1分別交AB,AC于點(diǎn)E,F(xiàn).

(1)求證:△BCD≌△A1CF;
(2)若旋轉(zhuǎn)角ɑ為30°,
①請(qǐng)你判斷△BB1D的形狀;
②求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊(cè)答案