【題目】如圖,點(diǎn)E、A、C在一條直線上,給出下列三個(gè)事項(xiàng):①AD⊥BC, EG⊥BC,垂足分別為D、G;②∠1=∠2;③AD平分∠BAC.
(1)以其中兩個(gè)事項(xiàng)作為條件,另一個(gè)事項(xiàng)作為結(jié)論,你能組成 個(gè)正確的結(jié)論;
(2)請(qǐng)你選擇其中一個(gè)正確結(jié)論進(jìn)行說明理由.
解:以 為條件, 為結(jié)論.(填寫序號(hào))
理由是:
【答案】(1)2;(2)①②,③(或①③,②),證明見解析.
【解析】試題分析: (1)首先根據(jù)以其中兩個(gè)事項(xiàng)作為條件,另一個(gè)事項(xiàng)作為結(jié)論有3種情況,再判斷是否都正確,從而得到正確的個(gè)數(shù).
(2)根據(jù)AD⊥BC, EG⊥BC得到AD∥EG,根據(jù)平行線的性質(zhì)得到∠1=∠CAD, ∠2 =∠BAD,因?yàn)椤?/span>1=∠2 (或∠CAD=∠BAD),得到∠CAD=∠BAD (∠1=∠2).
試題解析:
(1)2
(2)①②,③(或①③,②)
∵AD⊥BC, EG⊥BC
∴∠ADC =∠EGC=90°
∴AD∥EG
∴∠1=∠CAD, ∠2=∠BAD
∵∠1=∠2 (或∠CAD=∠BAD)
∴∠CAD=∠BAD (∠1=∠2)
∴AD平分∠BAC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是一組二次函數(shù)y=x2+3x﹣5的自變量x與函數(shù)值y的對(duì)應(yīng)值:
x | 1 | 1.1 | 1.2 | 1.3 | 1.4 |
y | ﹣1 | ﹣0.49 | 0.04 | 0.59 | 1.16 |
那么方程x2+3x﹣5=0的一個(gè)近似根是( )
A.1
B.1.1
C.1.2
D.1.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,點(diǎn)A、B分別在直線OM、ON上,BC是∠ABN的平分線.
(1)如圖1,若BC所在直線交∠OAB的平分線于點(diǎn)D時(shí),嘗試完成①、②兩題:
①當(dāng)∠ABO=30°時(shí),∠ADB= °
②當(dāng)點(diǎn)A、B分別在射線OM、ON上運(yùn)動(dòng)時(shí)(不與點(diǎn)O重合),試問:隨著點(diǎn)A、B的運(yùn)動(dòng),∠ADB的大小會(huì)變嗎?如果不會(huì),請(qǐng)求出∠ADB的度數(shù);如果會(huì),請(qǐng)求出∠ADB的度數(shù)的變化范圍;
(2)如圖2, 若BC所在直線交∠BAM的平分線于點(diǎn)C時(shí),將△ABC沿EF折疊,使點(diǎn)C落在四邊形ABEF內(nèi)點(diǎn)C′的位置.求∠BEC′+∠AFC′ 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=2x2的圖象可以看做拋物線y=2( x-1)2+3怎樣平移得到的( )
A.向左平移1個(gè)單位,再向下平移3個(gè)單位
B.向左平移1個(gè)單位,再向上平移3個(gè)單位
C.向右平移1個(gè)單位,再向上平移3個(gè)單位
D.向右平移1個(gè)單位,再向下平移3個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把直線y=-x-1沿x軸向右平移2個(gè)單位,所得直線的函數(shù)解析式為( )
A. y=-x+1B. y=-x-3C. y=-2x-1D. y=2x-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,計(jì)算正確的是( 。
A. 2a3a=6a B. (3a2)3=27a6 C. a4÷a2=2a D. (a+b)2=a2+ab+b2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com