【題目】小聰和小明分別從相距30公里的甲、乙兩地同時(shí)出發(fā)相向而行,小聰騎摩托車(chē)到達(dá)乙地后立即返回甲地,小明騎自行車(chē)從乙地直接到達(dá)甲地,函數(shù)圖象y1(km)和y2(km)分別表示小聰離甲地的距離和小明離乙地的距離與已用時(shí)間t(h)之間的關(guān)系,如圖所示.下列說(shuō)法:①折線段OAB是表示小聰?shù)暮瘮?shù)圖象y1,線段OC是表示小明的函數(shù)圖象y2;②小聰去乙地和返回甲地的平均速度相同;③兩人在出發(fā)80分鐘后第一次相遇;④小明騎自行車(chē)的平均速度為15km/h,其中不正確的個(gè)數(shù)為( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

【答案】B

【解析】試題解析:①小聰離甲地的距離先增加至最大然后減小直至為0,小明離乙地的距離逐漸增大直至最大30千米,正確,故本選項(xiàng)錯(cuò)誤;

②小聰去乙地的平均速度30÷1=30,返回甲地的平均速度是30÷1=30,相同,正確,故本選項(xiàng)錯(cuò)誤;

③小明去甲地的平均速度是30÷2=15,小時(shí)=40分鐘,

所以,兩人在出發(fā)40分鐘后第一次相遇,錯(cuò)誤,故本選項(xiàng)正確;

④小明騎自行車(chē)的平均速度為15公里/小時(shí),正確,故本選項(xiàng)錯(cuò)誤.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:

作出△繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A1B2C2

(2)請(qǐng)直接寫(xiě)出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .(寫(xiě)出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)滿(mǎn)金陵慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校寫(xiě)生的捐款情況,隨機(jī)抽取了名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

)這名同學(xué)捐款的眾數(shù)為__________元,中位數(shù)為__________.

)求這名同學(xué)捐款的平均數(shù).

)該校共有名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)的圖象過(guò)點(diǎn),且頂點(diǎn)坐標(biāo)為

求此二次函數(shù)的表達(dá)式;

畫(huà)出此函數(shù)圖象,并根據(jù)函數(shù)圖象寫(xiě)出:當(dāng)時(shí),y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,BC,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠DAB=DC

1)求證:四邊形BFCE是平行四邊形;

2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,點(diǎn)E、F分別在ADBC上,EFBD相交于點(diǎn)O,AE=CF

1)求證:OE=OF;

2)連接BE、DF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D02),點(diǎn)E是線段OB延長(zhǎng)線上一點(diǎn),M是線段OB上一動(dòng)點(diǎn)(不包括點(diǎn)O、B),作MNDM,垂足為M,且MN=DM.設(shè)OM=a,請(qǐng)你利用基本活動(dòng)經(jīng)驗(yàn)直接寫(xiě)出點(diǎn)N的坐標(biāo)______(用含a的代數(shù)式表示);

2)如果(1)的條件去掉MN=DM”,加上交∠CBE的平分線與點(diǎn)N”,如圖,求證:MD=MN.如何突破這種定勢(shì),獲得問(wèn)題的解決,請(qǐng)你寫(xiě)出你的證明過(guò)程.

3)在(2)的條件下,如圖,請(qǐng)你繼續(xù)探索:連接DNBC于點(diǎn)F,連接FM,下列兩個(gè)結(jié)論:①FM的長(zhǎng)度不變;②MN平分∠FMB,請(qǐng)你指出正確的結(jié)論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的三條角平分線相交于點(diǎn)I,過(guò)點(diǎn)IDIIC,交AC于點(diǎn)D.

(1)如圖①,求證:∠AIB=ADI;

(2)如圖②,延長(zhǎng)BI,交外角∠ACE的平分線于點(diǎn)F.

①判斷DICF的位置關(guān)系,并說(shuō)明理由;

②若∠BAC=70°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,x=是該拋物線的對(duì)稱(chēng)軸,根據(jù)圖中所提供的信息,請(qǐng)寫(xiě)出有關(guān)a,b,c的四條結(jié)論,并簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案