【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若BD=,則∠ACD=_____________°.

【答案】112.5.

【解析】

如圖,連接OC.根據(jù)切線的性質(zhì)得到OCDC,根據(jù)線段的和得到OD=,根據(jù)勾股定理得到CD=1,根據(jù)等腰直角三角形的性質(zhì)得到∠DOC=45°,根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì)得到∠OCA=DOC=22.5°,再根據(jù)角的和得到∠ACD的度數(shù).

解:如圖,連結(jié)OC.∵DC是⊙O的切線,

∴OC⊥DC,

∵BD=,OA=OB=OC=1,

∴OD=,∴CD===1,

∴OC=CD,

∴∠DOC=45°,

∵OA=OC,

∴∠OAC=∠OCA,

∴∠OCA=∠DOC=22.5°,

∴∠ACD=∠OCA+∠OCD=22.5°+90°=112.5°.

故答案為112.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一座建于若干年前的水庫大壩的橫斷面如圖所示,其中背水面的整個(gè)坡面是長為米、寬為米的矩形.現(xiàn)需將其整修并進(jìn)行美化,方案如下:①將背水坡的坡度由改為;②用一組與背水坡面長邊垂直的平行線將背水坡面分成塊相同的矩形區(qū)域,依次相間地種草與栽花.

(1)求整修后背水坡面的面積;

(2)如果栽花的成本是每平方米元,種草的成本是每平方米元,那么種植花草至少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè),

①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當(dāng)點(diǎn)在直線BC上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)上一動(dòng)點(diǎn),把沿折疊,當(dāng)點(diǎn)的對應(yīng)點(diǎn)落在的角平分線上時(shí),則點(diǎn)的距離為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,以為直徑的⊙于點(diǎn),過點(diǎn)于點(diǎn),且

)判斷與⊙的位置關(guān)系并說明理由;

)若,,求⊙的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的垂直平分線,交射線上,并且

)求證:;

)當(dāng)的大小滿足什么條件時(shí),四邊形是菱形?請回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(m+2x2+kx+n

1)若此函數(shù)為一次函數(shù);①m,kn的取值范圍;②當(dāng)﹣2≤x≤1時(shí),0≤y≤3,求此函數(shù)關(guān)系式;

2)若m=﹣1,n2,當(dāng)﹣2≤x≤2時(shí),此函數(shù)有最小值﹣4,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的垂直平分線于點(diǎn),交于點(diǎn),且,添加一個(gè)條件,能證明四邊形為正方形的是________

; ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,以為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是(

A. 正七邊形 B. 正八邊形

C. 正六邊形 D. 正十邊形

查看答案和解析>>

同步練習(xí)冊答案