【題目】如圖,四邊形ABCD,ABDC,B=55°,1=85°,2=40°

(1)求∠D的度數(shù);

(2)求證:四邊形ABCD是平行四邊形.

【答案】(1)D=55°;(2)證明見解析.

【解析】

(1)在△ADC中,根據(jù)三角形的內(nèi)角和為180°即可求得∠D的大小;(2)已知ABDC,根據(jù)平行線的性質(zhì)可得∠2+ACB+B=180°,所以∠ACB=180°﹣B﹣2=85°,即可得∠ACB=1=85°,根據(jù)內(nèi)錯角相等兩直線平行可得ADBC,再由兩組對邊分別平行的四邊形為平行四邊形即可得四邊形ABCD是平行四邊形

(1∵∠D+2+3=180°,

∴∠D=180°﹣2﹣3

=180°﹣40°﹣85°=55°.

(2)證明:∵ABDC,

∴∠2+ACB+B=180°.

∴∠ACB=180°﹣B﹣2

=180°﹣55°﹣40°=85°.

∵∠ACB=1=85°,

ADBC.

∴四邊形ABCD是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為等邊三角形,,,R,S,則四個結(jié)論正確的是  

P的平分線上;

;

A. 全部正確 B. 正確 C. 正確 D. 正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生的身高狀況,隨機對該校男生、女生的身高進行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制如圖所示的統(tǒng)計圖表.

已知女生身高在A組的有8人,根據(jù)圖表中提供的信息,回答下列問題:

(1)補充圖中的男生身高情況直方圖,男生身高的中位數(shù)落在_______組(填組別字母序號);

(2)在樣本中,身高在150≤x<155之間的人數(shù)共有_______人,身高人數(shù)最多的在____組(填組別序號);

(3)已知該校共有男生400人,女生420人,請估計身高不足160的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校從初二(1)班和(2)班各選拔10名同學(xué)組成甲隊和乙隊,參加數(shù)學(xué)競賽活動,此次競賽共有10道選擇題,答對8題(含8題)以上為優(yōu)秀,兩隊選手答對題數(shù)統(tǒng)計如下:

答對題數(shù)

5

6

7

8

9

10

平均數(shù)(

甲隊選手

1

0

1

5

2

1

8

乙隊選手

0

0

4

3

2

1

a

中位數(shù)

眾數(shù)

方差(s2

優(yōu)秀率

甲隊選手

8

8

1.6

80%

乙隊選手

b

c

1.0

m

(1)上述表格中,a=   ,b=   ,c=   ,m=   

(2)請根據(jù)平均數(shù)和眾數(shù)的意義,對甲、乙兩隊選手進行評價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市舉辦的讀好書,講禮儀活動中,東華學(xué)校積極行動,各班圖書角的新書、好書不斷增多,除學(xué)校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學(xué)捐獻圖書的情況統(tǒng)計圖:

請你根據(jù)以上統(tǒng)計圖中的信息,解答下列問題:

1)該班有學(xué)生多少人?

2)補全條形統(tǒng)計圖;

3)七(1)班全體同學(xué)所捐獻圖書的中位數(shù)和眾數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點EBC的延長線上,的平分線BD的平分線CD相交于點D,連接AD,則下列結(jié)論中,正確的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點OBC上一點,以點O圓心,OC為半徑的圓交BC于點D,恰好與AB相切于點E

求證:AO的平分線;

,,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標(biāo)為(3,0),與y軸交于點C(0,﹣3)

(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當(dāng)四邊形ABPC的面積最大時,求點P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案