【題目】小明和小穎在如圖所示的四邊形場地上,沿邊騎自行車進行場地追逐賽(兩人只要有一個人回到自己的出發(fā)點,則比賽結(jié)束).小明從A地出發(fā),沿A→B→C→D→A的路線勻速騎行,速度為8米/秒;小穎從B地出發(fā),沿B→C→D→A→B的路線勻速騎行,速度為6米/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.設(shè)騎行時間為t秒,假定他們同時出發(fā)且每轉(zhuǎn)一個彎需要額外耗時2秒.
(1)填空:當t=_____秒時,兩人第一次到B地的距離相等;
(2)試問小明能否在小穎到達D地前追上她?若能,求出此時t的值;若不能,請說明理由.
【答案】(1);(2)詳見解析.
【解析】
(1)由題意列出方程即可解決問題.
(2)先判斷小明在BC還是CD邊上追上小穎,再用騎車的路程的關(guān)系建立方程,求解即可.
(1)由題意得,40﹣8t=6t,
∴t=,
∴當t=秒時,兩人第一次到B地的距離相等;
故答案為:;
(2)當小穎到點C時,所用時間為80÷6=秒,此時,小明也騎了秒,
而小明到點B時,用了40÷8=5秒,剩余﹣5﹣2=,×8=米<80米,所以小明不可能在BC邊上追上小穎,
當小穎到達D點時,所用時間為(80+90)÷6+2=+2=秒,
小明在AB邊上用時:40÷8=5秒,小明在BC邊上用時:80÷8=10秒,剛好到到點C時,一共用時:5+2+10=17秒,小明在CD邊上用時:90÷8=11.25秒,所以,小明到達點D時,共用:5+10+2+2+11.25=30.25秒<秒
∴能在到達D地前追上;
根據(jù)題意得,8(t﹣2×2)=6(t﹣2)+40,∴t=30秒,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長方形紙片ABCD的一角沿AE折疊,使點D落在點D′處,得到如圖所示的圖形,若∠CED′=56°,則∠D′AB=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)兒童公園北門處有一座石拱橋,如圖,石拱橋的橋頂?shù)剿娴木嚯xCD為8cm,拱橋半徑OC為5cm,求水面寬AB為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階.下圖是其中的甲、乙兩段臺階路的示意圖.請你用所學(xué)過的有關(guān)統(tǒng)計知識(平均數(shù)、中位數(shù)、方差和極差)回答下列問題:
(1)兩段臺階路有哪些相同點和不同點?
(2)哪段臺階路走起來更舒服?為什么?
(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數(shù)不變的情況下,請你提出合理的整修建議.
圖中的數(shù)字表示每一級臺階的高度(單位:cm),并且數(shù)據(jù)15,16,16,14,14,15的方差s甲2=,數(shù)據(jù)11,15,18,17,10,19的方差s乙2=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,將一個直角三角板的直角頂點與點A重合,一條直角邊與邊BC交于點E(點E不與點B和點C重合),另一條直角邊與邊CD的延長線交于點F.
(1)如圖①,求證:AE=AF;
(2)如圖②,此直角三角板有一個角是45°,它的斜邊MN與邊CD交于G,且點G是斜邊MN的中點,連接EG,求證:EG=BE+DG;
(3)在(2)的條件下,如果 = ,那么點G是否一定是邊CD的中點?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把等腰直角放在直角坐標系內(nèi),其中,點、的坐標分別為,將等腰直角沿軸向右平移,當點落在直線上時,則線段掃過的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠A=∠ACB,CD是∠ACB的平分線,∠ADC=150°,則∠ABC的度數(shù)為_____度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com