【題目】如圖,△ABC, ∠ABC、∠ACB的三等分線交于點(diǎn)E、D,若∠BFC=132°,∠BGC=118°,則∠A的度數(shù)為( )
A. 65° B. 66° C. 70° D. 78°
【答案】C
【解析】分析:由三角形內(nèi)角和及角平分線的定義可得到關(guān)于∠DBC和∠DCB的方程組,可求得∠DBC+∠DCB,則可求得∠ABC+∠ACB,再利用三角形內(nèi)角和可求得∠A.
本題解析: ∵∠ABC、∠ACB的三等分線交于點(diǎn)E. D,
∴∠FBC=2∠DBC,∠GCB=2∠DCB,
∵∠BFC=132,∠BGC=118,
∴∠FBC+∠DCB=180∠BFC=180132=48,
∠DBC+∠GCB=180∠BGC=180118=62
即 ,
由①+②可得:3(∠DBC+∠DCB)=110,
∴∠ABC+∠ACB=3(∠DBC+∠DCB)=110,
∴∠A=180(∠ABC+∠ACB)=180110=70,
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O,∠BAD=90°,AC為直徑,過點(diǎn)A作圓O的切線交CB的延長線于點(diǎn)E,過AC的三等分點(diǎn)F(靠近點(diǎn)C)作CE的平行線交AB于點(diǎn)G,連結(jié)CG.
(1)求證:AB=CD;
(2)求證:CD2=BEBC;
(3)當(dāng)CG= ,BE= 時(shí),求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組在四天的實(shí)驗(yàn)研究中發(fā)現(xiàn):駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同,他們將一頭駱駝前兩晝夜的體溫變化情況繪制成右圖,請根據(jù)圖象回答:
(1)在這個(gè)問題中,自變量是什么?因變量是什么?
(2)第一天中,在什么時(shí)間范圍內(nèi)這頭駱駝的體溫是上升的?它的體溫從最低上升到最高需要多少時(shí)間?
(3)第三天12時(shí)這頭駱駝的體溫是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是AB的中點(diǎn),點(diǎn)D是BC的中點(diǎn),現(xiàn)給出下列等式:①CD=AC-DB,②CD=AB,③CD=AD-BC,④BD=2AD-AB.其中正確的等式編號是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解不等式組,并在數(shù)軸上表示出解集:
①
②
(2)分解因式:
①x(x﹣y)﹣y(y﹣x)
②﹣12x3+12x2y﹣3xy2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( )
A.48
B.60
C.76
D.80
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖1,拋物線y=ax2+bx+ ,經(jīng)過A(1,0)、B(7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊△ABC.
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點(diǎn)M,是S△ABM= S△ABC?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(3)如圖2,E是線段AC上的動(dòng)點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說明理由;
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動(dòng)到C時(shí),請直接寫出點(diǎn)P經(jīng)過的路徑長(不需要寫過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(3,-3),且與直線y=4x-3的交點(diǎn)B在x軸上.
(1)求直線AB對應(yīng)的函數(shù)表達(dá)式;
(2)求直線AB與坐標(biāo)軸所圍成的三角形BOC(O為坐標(biāo)原點(diǎn),C為直線AB與y軸的交點(diǎn))的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com