【題目】如圖,點的坐標是(1,0),點的坐標是(06),的中點,將繞點逆時針旋轉(zhuǎn)90°.后得到.若反比例函數(shù)的圖像恰好經(jīng)過的中點,則k的值是(

A.19B.16.5C.14D.11.5

【答案】B

【解析】

AHy軸于H.證明△AOB≌△BHA′(AAS),推出OABH,OBAH,求出點A′坐標,再利用中點坐標公式求出點D坐標即可解決問題.

AHy軸于H

∵∠AOB=∠AHB=∠ABA′=90°,

∴∠ABO+∠ABH90°,∠ABO+∠BAO90°,

∴∠BAO=∠ABH,

BABA′,

∴△AOB≌△BHA′(AAS),

OABH,OBAH,

∵點A的坐標是(1,0),點B的坐標是(0,6),

OA1,OB6,

BHOA1,AHOB6,

OH5,

A′(6,5),

BDAD,

D3,),

∵反比例函數(shù)的圖象經(jīng)過點D,

k=16.5

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,點E,F分別在邊BC,AD上,BEDF,∠AEC90°

1)求證:四邊形AECF是矩形;

2)連接BF,若AB4,∠ABC60°BF平分∠ABC,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解八年級學生參加社會實踐活動情況,隨機調(diào)查了本校部分八年級學生在第一學期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:

(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為 ,圖①中的的值為 ;

(2)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)若該校八年級學生有人,估計參加社會實踐活動時間大于天的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A,B,C的坐標分別是(04),(4,0),(8,0),⊙M是△ABC的外接圓,則點M的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線Ly=kx+2k(k>0)x軸交于點A,與y軸交于點B,與函數(shù)(x>0)的圖象的交點P位于第一象限.

(1)若點P的坐標為(1,6),

①求m的值及點A的坐標;

=_________

(2)直線hy=2kx-2y軸交于點C,與直線L1交于點Q,若點P的橫坐標為1

①寫出點P的坐標(用含k的式子表示);

②當PQ≤PA時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設(shè)計了閱讀”、“打球”、“書法其他四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖:

根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:

(1)本次抽樣調(diào)查中的樣本容量是

(2)補全條形統(tǒng)計圖;

(3)該校共有2000名學生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為打球的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一種指甲剪.該指甲剪利用杠桿原理操作,使用者只需施力按壓柄的末端,便可輕易透過鋒利的前端刀片剪斷指甲,它被按壓后示意圖如圖2所示,上下臂杠桿軸承,未使用指甲剪時,點上,且,則的長為________;使用指甲剪時,下壓點,當時,兩刀片咬合,繞點按逆時針方向旋轉(zhuǎn)到的位置,則的交點從開始到結(jié)束時移動的距離_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究

1)請在圖①的的邊上求作一點,使最短;

2)如圖②,點內(nèi)部一點,且滿足.求證:點到點、、的距離之和最短,即最短;

問題解決

3)如圖③,某高校有一塊邊長為400米的正方形草坪,現(xiàn)準備在草坪內(nèi)放置一對石凳及垃圾箱在點處,使點、、三點的距離之和最小,那么是否存在符合條件的點?若存在,請作出點的位置,并求出這個最短距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于的方程有實數(shù)根.

(1)的取值范圍;

(2)若該方程有兩個實數(shù)根,取一個的值,求此時該方程的根.

查看答案和解析>>

同步練習冊答案