【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于(﹣2,0)和(4,0)兩點(diǎn),當(dāng)函數(shù)值y>0時(shí),自變量x的取值范圍是(
A.x<﹣2
B.x>4
C.﹣2<x<4
D.x>0

【答案】C
【解析】解: ∵二次函數(shù)y=ax2+bx+c的圖象與x軸交于(﹣2,0)和(4,0)兩點(diǎn),函數(shù)開口向下,
∴函數(shù)值y>0時(shí),自變量x的取值范圍是﹣2<x<4,
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識可以得到問題的答案,需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(0,3)、B(4,3)、C(1,0)、
(1)填空:拋物線的對稱軸為直線x= , 拋物線與x軸的另一個(gè)交點(diǎn)D的坐標(biāo)為;
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的三條邊所得的弦長相等,則下列說法正確的是(
A.點(diǎn)O是△ABC的內(nèi)心
B.點(diǎn)O是△ABC的外心
C.△ABC是正三角形
D.△ABC是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象如圖所示,則下列結(jié)論①;②;③④當(dāng)時(shí),正確的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析表達(dá)式為,且軸交于點(diǎn),直線經(jīng)過點(diǎn),直線, 交于點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)求直線的解析表達(dá)式;

3)求的面積;

4)在直線上存在異于點(diǎn)的另一點(diǎn),使得的面積相等,請直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,

(1)描出A(﹣4,3)、B(﹣1,0)、C(﹣2,3)三點(diǎn).

(2)△ABC 的面積是多少?

(3)作出△ABC 關(guān)于 y 軸的對稱圖形.

(4)請?jiān)?/span>x 軸上求作一點(diǎn)P,使△PA1C1 的周長最小,并直接寫出點(diǎn)P 的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過點(diǎn)C,點(diǎn) A,B 在直線 L 同側(cè),BD⊥L, AE⊥L,垂足分別為D,E

求證:△AEC≌△CDB

(2)類比探究:如圖 2,RtABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn) 90° AB’, 連接B’C,求AB’C 的面積

(3)拓展提升:如圖 3,等邊EBC ,EC=BC=3cm,點(diǎn) O BC 上且 OC=2cm,動(dòng)點(diǎn) P 從點(diǎn) E 沿射線EC 1cm/s 速度運(yùn)動(dòng),連接 OP,將線段 OP 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 120°得到線段 OF,設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為t 秒。

當(dāng)t= 時(shí),OF∥ED

若要使點(diǎn)F 恰好落在射線EB 上,求點(diǎn)P 運(yùn)動(dòng)的時(shí)間t

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E點(diǎn)在AB上,F(xiàn)點(diǎn)在BC的延長線上,且CF=AE,連接DE、DF、EF.
(1)求證:△ADE≌△CDF;
(2)填空:△CDF可以由△ADE繞旋轉(zhuǎn)中心點(diǎn),按逆時(shí)針方向旋轉(zhuǎn)度得到;
(3)若BC=3,AE=1,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題的逆命題不成立的是(  )

A. 如果兩個(gè)數(shù)互為相反數(shù),那么它們的和等于0

B. 如果兩個(gè)角相等,那么這兩個(gè)角的補(bǔ)角也相等

C. 如果兩個(gè)數(shù)相等,那么它們的平方相等

D. 如果|a|=|b|,那么a=b

查看答案和解析>>

同步練習(xí)冊答案