【題目】函數(shù)y1=kx2+ax+a的圖象與x軸交于點A,B(點A在點B的左側),函數(shù)y2=kx2+bx+b,的圖象與x軸交于點C,D(點C在點D的左側),其中k≠0,a≠b.
(1)求證:函數(shù)y1與y2的圖象交點落在一條定直線上;
(2)若AB=CD,求a,b和k應滿足的關系式;
(3)是否存在函數(shù)y1和y2,使得B,C為線段AD的三等分點?若存在,求的值,若不存在,說明理由
【答案】(1) 見解析;(2) a+b=4k ;(3) =或
【解析】
(1)使兩個函數(shù)關系式相等,根據(jù)已知求出x的值即可判斷;
(2)表示出A、B、C、D的坐標,求出AB、CD,列方程求解即可;
(3)方法與(2)相同,利用三等分點條件,列方程求解即可.
(1)當y1=y2時,kx2+ax+a=kx2+bx+b,
∵a≠b,
∴x=﹣1,
∴函數(shù)y1與y2的圖象交點落在一條定直線上;
(2)若AB=CD則xB﹣xA=xD﹣xC,
A、B、C、D為拋物線與x軸的交點,可得
xA=,xB=,
xC=,xD=,
代入xB﹣xA=xD﹣xC得
-=-,
所以a+b=4k;
(3)因為B、C為線段AD的三等分點,
當點B在點C左側時,BC=CD,則有xC﹣xD=xC﹣xB,
∴2xC=xD+xB,
∴2×=+,
整理得:a2+b2+14ab=0,
∴()2++1=0,
解得=或;
當點C在點B左側時,AC=BC,則有xC﹣xA=xB﹣xC,
∴2xC=xA+xB,
∴2×=+,
即=,
整理得:a-b=,
∵a+b=4k,
∴a-b=,
即a-b=,
a2+b2-ab=0,
∴()2-+1=0,
△<0,方程無解,
綜上,的值為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD,過點B作BE∥AC交DC的延長線于點E.過點D作DH⊥BE于H,G為AC中點,連接GH.
(1)求證:BE=AC.
(2)判斷GH與BE的數(shù)量關系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調(diào)查,并把調(diào)查結果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調(diào)查的學生共有多少人?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學中選取2名,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,E是CD邊上的點,過點E作EF⊥BD于F.
(1)尺規(guī)作圖:在圖中求作點E,使得EF=EC;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接FC,求∠BCF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為函數(shù)y=(x>0)圖象上一點,過點P作x軸、y軸的平行線,分別與函數(shù)y=(x>0)的圖象交于點A、B,則△AOB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校七年級學生每周上網(wǎng)的時間,甲、乙兩名學生進行了抽樣調(diào)查.甲同學調(diào)查了七年級電腦愛好者中40名學生每周上網(wǎng)的時間;乙同學從全校800名七年級學生中隨機抽取了40名學生,調(diào)查了每周上網(wǎng)的時間.甲、乙同學各自整理的樣本數(shù)據(jù)如表:
上網(wǎng)時間t(小時/周) | 甲學生抽樣人數(shù)(人) | 乙學生抽樣人數(shù)(人) |
0≤t<1.5 | 6 | 22 |
1.5≤t<2.5 | 10 | 10 |
2.5≤t<3.5 | 16 | 6 |
t≥3.5 | 8 | 2 |
(1)你認為哪名學生抽取的樣本不合理,請說明理由.
(2)請你根據(jù)抽取樣本合理的學生的數(shù)據(jù),將調(diào)查結果繪制成合適的統(tǒng)計圖(繪制一種即可).
(3)專家建議每周上網(wǎng)2.5小時以上(含2.5小時)的學生應適當減少上網(wǎng)的時間,估計該校全體七年級學生中應適當減少上網(wǎng)的時間的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,先有一張矩形紙片點分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結論:
②四邊形是菱形;
③重合時,;
④的面積的取值范圍是
其中正確的是_____(把正確結論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知菱形在平面直角坐標系的位置如圖所示,頂點,,點是對角線上的一個動點,,,點是對角線上的一個動點,,當最短時,點的坐標為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com