【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FPBA的延長(zhǎng)線于點(diǎn)Q,則下列結(jié)論:

AE=BF;S四邊形ECFG=SABG;BFQ是等腰三角形;

其中一定正確的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

①根據(jù)正方形的性質(zhì)和已知條件證明ABE≌△BCF即可;②根據(jù)三角形ABE和三角形BFC面積相等即可證明S四邊形ECFGSABG;③根據(jù)折疊可得∠CFB=∠PFB,由DCAB得∠CFB=∠FBA,等量代換后即可證明BFQ是等腰三角形;④可以設(shè)正方形邊長(zhǎng)為1,AQx,AHy,作FIAB于點(diǎn)I,進(jìn)而根據(jù)同角三角函數(shù)值相等用含x的式子表示y,然后求出QH,利用勾股定理列出方程求出x的值,即可得到

解:①∵在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),

AB=BC,∠ABE=BCF=90°,BE=CF

∴△ABE≌△BCFSAS),

AE=BF,故①正確;

②∵ABE≌△BCF,

SBCF=SABE

SBCFSBGE=SABESBGE,即S四邊形ECFG=SABG,故②正確;

③∵由折疊可知:∠CFB=PFB,

DCAB,

∴∠CFB=FBA,

∴∠PFB=FBA,

QF=QB

BFQ是等腰三角形,故③正確;

④如圖所示:

設(shè)PQAD交于點(diǎn)H,作FIAB于點(diǎn)I,則四邊形DAIF是矩形,

設(shè)正方形ABCD邊長(zhǎng)為1AQ=x,AH=y

FI=AD=1,AI=QI=x+,

RtAQHRtFIQ中,tanQ=,即

y=,

AHFI,

,即,

RtAHQ中,根據(jù)勾股定理得:x2+y2=y21+x2

x2+2=21+x2,

解得:x=

經(jīng)檢驗(yàn),x=是方程的解,

BQ,

,故④正確.

∴正確的是①②③④,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖①②③中的一種)

設(shè)豎檔ABx米,請(qǐng)根據(jù)以上圖案回答下列問題:(題中的不銹鋼材料總長(zhǎng)度均指各圖中所有黑線的長(zhǎng)度和,所有橫檔和豎檔分別與ADAB平行)

1)在圖①中,如果不銹鋼材料總長(zhǎng)度為 12 米,當(dāng)x為多少時(shí),矩形框架ABCD的面積為 3 平方米?

2)在圖②中,如果不銹鋼材料總長(zhǎng)度為 12 米,當(dāng)x為多少時(shí),矩形架ABCD的面積S最大?最大面積是多少?

3)在圖③中,如果不銹鋼材料總長(zhǎng)度為a米,共有n條豎檔,那么當(dāng)x為多少時(shí),矩形框架ABCD的面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在北部灣經(jīng)濟(jì)區(qū)農(nóng)業(yè)示范基地采購A,B兩種農(nóng)產(chǎn)品,已知A種農(nóng)產(chǎn)品每千克的進(jìn)價(jià)比B種多2元,且用24000元購買A種農(nóng)產(chǎn)品的數(shù)量(按重量計(jì))與用18000元購買B種農(nóng)產(chǎn)品的數(shù)量(按重量計(jì))相同.

(1)求A,B兩種農(nóng)產(chǎn)品每千克的進(jìn)價(jià)分別是多少元?

(2)該公司計(jì)劃購進(jìn)A,B兩種農(nóng)產(chǎn)品共40噸,并運(yùn)往異地銷售,運(yùn)費(fèi)為500元/噸,已知A種農(nóng)產(chǎn)品售價(jià)為15元/kg,B種農(nóng)產(chǎn)品售價(jià)為12元/kg,其中A種農(nóng)產(chǎn)品至少購進(jìn)15噸且不超過B種農(nóng)產(chǎn)品的數(shù)量,問該公司應(yīng)如何采購才能獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC邊上一點(diǎn),EAD的中點(diǎn),過點(diǎn)ABC的平行線交BE的延長(zhǎng)線于F,且AF=CD,連接CF.

(1)求證:△AEF≌△DEB;

(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1kx+bk≠0)和反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,2),Bn,﹣4

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)觀察圖象,直接寫出不等式y1y2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)DDHAC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.

(1)求證:DH是圓O的切線;

(2)若AEH的中點(diǎn),求的值;

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西寧市教育局自實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高.張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)本次調(diào)查中,張老師一共調(diào)查了   名同學(xué);

2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法列出所有等可能的結(jié)果,并求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點(diǎn),交軸于點(diǎn),與反比例函數(shù)的圖象交于,

1)求的值;

2)根據(jù)圖象直接寫出時(shí),的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為(  )

A. B. 9C. 12πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案