【題目】已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙OAB于點(diǎn)DE的中點(diǎn).

1)求證:∠ACD=∠DEC;(2)延長(zhǎng)DE、CB交于點(diǎn)P,若PB=BODE=2,求PE的長(zhǎng)

【答案】1)見(jiàn)解析;(2PE=4.

【解析】

1)根據(jù)同角的余角相等得到∠ACD=B,然后由圓周角定理可得結(jié)論;

2)連結(jié)OE,根據(jù)圓周角定理和等腰三角形的性質(zhì)證明OECD,然后由POE∽△PCD列出比例式,求解即可.

解:(1)證明:∵BC是⊙O的直徑,

∴∠BDC=90°,∴∠BCD+B=90°,

∵∠ACB=90°,

∴∠BCD+ACD=90°

∴∠ACD=B,

∵∠DEC=B,

∴∠ACD=DEC

2)證明:連結(jié)OE

EBD弧的中點(diǎn).

∴∠DCE=BCE

OC=OE

∴∠BCE=OEC

∴∠DCE=OEC

OECD

∴△POE∽△PCD,

PB=BO,DE=2

PB=BO=OC

PE=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推進(jìn)“全國(guó)億萬(wàn)學(xué)生陽(yáng)光體育運(yùn)動(dòng)”的實(shí)施,組織廣大同學(xué)開(kāi)展健康向上的第二課堂活動(dòng).我市某中學(xué)準(zhǔn)備組建球類社團(tuán)(足球、籃球、羽毛球、乒乓球)、舞蹈社團(tuán)、健美操社團(tuán)、武術(shù)社團(tuán),為了解在校學(xué)生對(duì)這4個(gè)社團(tuán)活動(dòng)的喜愛(ài)情況,該校隨機(jī)抽取部分初中生進(jìn)行了“你最喜歡哪個(gè)社團(tuán)”調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計(jì)表,請(qǐng)根據(jù)圖表中的信息解答下列問(wèn)題:

社團(tuán)類別

人數(shù)

占總?cè)藬?shù)比例

球類

60

m

舞蹈

30

0.25

健美操

n

0.15

武術(shù)

12

0.1

1)求樣本容量及表格中mn的值;

2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;

3)被調(diào)查的60個(gè)喜歡球類同學(xué)中有3人最喜歡足球,若該校有3000名學(xué)生,請(qǐng)估計(jì)該校最喜歡足球的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)美服裝店準(zhǔn)備購(gòu)進(jìn)一批兩種不同型號(hào)的衣服,已知若購(gòu)進(jìn)A型號(hào)的衣服9件,B型號(hào)的衣服10件共需1 810元;若購(gòu)進(jìn)A型號(hào)的衣服12件,B型號(hào)的衣服8件共需1 880元.已知銷(xiāo)售一件A型號(hào)的衣服可獲利18元,銷(xiāo)售一件B型號(hào)的衣服可獲利30元.

(1)A、B型號(hào)衣服的進(jìn)價(jià)各是多少元?

(2)若已知購(gòu)進(jìn)的A型號(hào)的衣服比B型號(hào)衣服的2倍還多4件,且購(gòu)進(jìn)的A型號(hào)的衣服不多于28件,則該服裝店要想獲得的利潤(rùn)不少于699元,在這次進(jìn)貨時(shí)可有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖,AB的直徑,且,點(diǎn)M外一點(diǎn),且MA,MC分別切于點(diǎn)A、C兩點(diǎn)AM的延長(zhǎng)線交于點(diǎn)D.

求證:;

填空

當(dāng)______時(shí),四邊形AOCM是正方形.

當(dāng)______時(shí),為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)已知關(guān)于的方程

1求證:方程總有兩個(gè)實(shí)數(shù)根;

2如果為正整數(shù),且方程的兩個(gè)根均為整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是△ABC的內(nèi)心,過(guò)點(diǎn)OEFBCABE,交ACF,過(guò)點(diǎn)OODACD.下列四個(gè)結(jié)論:①∠BOC90°+A;②EF不可能是△ABC的中位線;③設(shè)ODm,AE+AFn,則SAEFmn;④以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)男生200米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為DC、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問(wèn)題:

1a   ,b   ,c   

2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為   度;

3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生200米跑比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點(diǎn),連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居城市,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉,經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.

1)試求出yx的函數(shù)關(guān)系式;

2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過(guò)乙種花卉的種植面積的2倍.

①試求種植總費(fèi)用W元與種植面積xm2)之間的函數(shù)關(guān)系式;

②應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用W最少?最少總費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案