【題目】問題探究
(1)如圖①,已知與直線,過作于點(diǎn),,的半徑為,則圓上一點(diǎn)到的距離的最小值是______;
(2)如圖②,在四邊形中,,,,,過點(diǎn)作一條直線交邊或于,若平分四邊形的面積,求的長(zhǎng);
問題解決
(3)如圖③所示,是由線段、、與弧圍成的花園的平面示意圖,,,//,CD⊥BC,點(diǎn)為的中點(diǎn),所對(duì)的圓心角為.管理人員想在上確定一點(diǎn),在四邊形區(qū)域種植花卉,其余區(qū)域種植草坪,并過點(diǎn)修建一條小路,把四邊形分成面積相等且盡可能小的兩部分,分別種植不同的花卉.問是否存在滿足上述條件的小路?若存在,請(qǐng)求出的長(zhǎng),若不存在,請(qǐng)說明理由.
【答案】(1);(2);(3)存在滿足上述條件的小路,的長(zhǎng)為.
【解析】
(1)圓上一點(diǎn)到的距離的最小值即是圓心到直線的距離與圓的半徑之差,依此計(jì)算即可;
(2)過點(diǎn)作于,連接、,先計(jì)算出四邊形ABCD的面積為32,△ABC的面積為22,可得點(diǎn)P在BC上,求出,從而可得AP;
(3)要使四邊形的面積最小,則的面積需最。c(diǎn)到的距離最短,則的面積最小.求出最小即可.
(1)∵,的半徑為,
∴圓上一點(diǎn)到的距離的最小值為:7-5=2,
故答案為:2;
(2)過點(diǎn)作于,連接、,則,如圖,
.
,
點(diǎn)在上,
(3)連接,
,點(diǎn)為的中點(diǎn),
,
,,
四邊形是矩形,
,,
.
要使四邊形的面積最小,則的面積需最小.
設(shè)所在圓的圓心為,則,過作于,交于點(diǎn),交于,由(1)可得此時(shí)點(diǎn)到的距離最短,即的面積最小.
,
,,
,,
,.
,
,
,
點(diǎn)在上,
則,
,
,
存在滿足上述條件的小路,的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,3),反比例函數(shù)(x>0)的圖象經(jīng)過點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)求k的值;
(2)求△BMN面積的最大值;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級(jí)共有150名女生,為了解該校女生實(shí)心球成績(jī)(單位:米)和仰臥起坐(單位:個(gè))的情況,從中隨機(jī)抽取30名女生進(jìn)行測(cè)試,獲得了她們的相關(guān)成績(jī),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析,下面給出了部分信息.
.實(shí)心球成績(jī)的頻數(shù)分布表如下:
分組 | 6.2≤<6.6 | 6.6≤<7.0 | 7.0≤<7.4 | 7.4≤<7.8 | 7.8≤<8.2 | 8.2≤<8.6 |
頻數(shù) | 2 | 10 | 6 | 2 | 1 |
.實(shí)心球成績(jī)?cè)?/span>7.0≤<7.4.這組的是:
7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.2 | 7.2 | 7.3 | 7.3 |
.一分鐘仰臥起坐成績(jī)?nèi)鐖D所示:
根據(jù)以上信息,回答下列問題:
(1)①表中m的值為 ;
②抽取學(xué)生一分鐘仰臥起坐成績(jī)的中位數(shù)為 個(gè);
(2)若實(shí)心球成績(jī)達(dá)到7.2米及以上,成績(jī)記為優(yōu)秀,請(qǐng)估計(jì)全年級(jí)女生成績(jī)達(dá)到優(yōu)秀的人數(shù).
(3)該年級(jí)某班體育委員將本班在這次抽樣測(cè)試中被抽取的8名女生的兩項(xiàng)成績(jī)的數(shù)據(jù)抄錄如下:
女生代碼 | A | B | C | D | E | F | G | H |
實(shí)心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分鐘仰臥起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有2名女生的一分鐘仰臥起坐成績(jī)未抄錄完整,當(dāng)老師說這8名女生恰好有4人兩項(xiàng)測(cè)試成績(jī)都達(dá)到了優(yōu)秀,于是體育委員推測(cè)女生E的一分鐘仰臥起坐成績(jī)達(dá)到了優(yōu)秀,你同意體育委員的說法嗎?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得,點(diǎn),旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,.記旋轉(zhuǎn)角為.
(1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)連接,設(shè)線段的中點(diǎn)為,連接,求線段的長(zhǎng)的最小值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,已知銳角內(nèi)有定點(diǎn),過點(diǎn)任意作一條直線,分別交射線,于點(diǎn)M,N.若是線段的中點(diǎn)時(shí),則稱直線是的中點(diǎn)直線.如圖2,射線的解析式為與軸的夾角為,,為的中點(diǎn)直線.
(1)求直線的解析式;
(2)若過點(diǎn)任意作一條直線,分別交射線,軸的正半軸于點(diǎn),,記的面積為,的面積為.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點(diǎn),頂點(diǎn)在第三象限,,是拋物線的對(duì)稱軸上的兩點(diǎn),且,在直線左側(cè)以為邊作正方形,點(diǎn)恰好在拋物線上.
(1)用含的式子表示;
(2)求證:點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱;
(3)判斷直線和直線(是常數(shù),且)的交點(diǎn)是否在拋物線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,點(diǎn)是上一點(diǎn),連接,點(diǎn)關(guān)于的對(duì)稱點(diǎn)恰好落在上.
(1)求證:;
(2)過點(diǎn)作的切線,交的延長(zhǎng)線于點(diǎn).如果,求的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)八年級(jí)學(xué)生在寒假期間積極抗擊疫情,開展老師“在你身邊”評(píng)星活動(dòng),學(xué)生可以從“自理星” 、“讀書星”、“健康星”、“孝敬星”、“ 勞動(dòng)星”等中選一個(gè)項(xiàng)目參加爭(zhēng)星競(jìng)選,根據(jù)該校八年級(jí)學(xué)生的“爭(zhēng)星”報(bào)名情況,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答下列問題:
(1)參加年級(jí)評(píng)星的學(xué)生共有________人;將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中“讀書星”對(duì)應(yīng)的扇形圓心角度數(shù)是________;
(3)若八年級(jí)1班準(zhǔn)備推薦甲、乙、丙、丁四名同學(xué)中的2名代表班級(jí)參加學(xué)校的“勞動(dòng)星” 報(bào)名,請(qǐng)用表格或樹狀圖分析甲和乙同學(xué)同時(shí)被選中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com