【題目】在△ABC中,P為邊AB上一點.
(1)如圖1,若∠ACP=∠B,求證:AC2=APAB;
(2)若M為CP的中點,AC=2.
①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;
②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.
【答案】
(1)
解:∵∠ACP=∠B,∠A=∠A,
∴△ACP∽△ABC,
∴ ,
∴AC2=APAB
(2)
解:①取AP在中點G,連接MG,
設(shè)AG=x,則PG=x,BG=3﹣x,
∵M是PC的中點,
∴MG∥AC,
∴∠BGM=∠A,
∵∠ACP=∠PBM,
∴△APC∽△GMB,
∴ ,
即 ,
∴x= ,
∵AB=3,
∴AP=3﹣ ,
∴PB= ;
②過C作CH⊥AB于H,延長AB到E,使BE=BP,
設(shè)BP=x.
∵∠ABC=45°,∠A=60°,
∴CH= ,HE= +x,
∵CE2= +( +x)2,
∵PB=BE,PM=CM,
∴BM∥CE,
∴∠PMB=∠PCE=60°=∠A,
∵∠E=∠E,
∴△ECP∽△EAC,
∴ ,
∴CE2=EPEA,
∴3+3+x2+2 x=2x(x+ +1),
∴x= ﹣1,
∴PB= ﹣1.
【解析】(1)根據(jù)相似三角形的判定定理即可得到結(jié)論;(2)①取AP在中點G,連接MG,設(shè)AG=x,則PG=x,BG=3﹣x,根據(jù)三角形的中位線的性質(zhì)得到MG∥AC,由平行線的性質(zhì)得到∠BGM=∠A,∵∠根據(jù)相似三角形的性質(zhì)得到 ,求得x= ,即可得到結(jié)論;②過C作CH⊥AB于H,延長AB到E,使BE=BP解直角三角形得到CH= ,HE= +x,根據(jù)勾股定理得到CE2= +9 +x)2根據(jù)相似三角形的性質(zhì)得到CE2=EPEA列方程即可得到結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F分別是矩形ABCD的邊BC、CD的中點,連接AC、AF、EF,若AF⊥EF,AC=,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C表示某旅游景區(qū)三個纜車站的位置,線段AB、BC表示連接纜車站的鋼纜,已知A、B、C三點在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米、310米、710米,鋼纜AB的坡度i1=1:2,鋼纜BC的坡度i2=1:1,景區(qū)因改造纜車線路,需要從A到C直線架設(shè)一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,O是對角線的交點,AF平分BAC,DHAF于點H,交AC于G,DH延長線交AB于點E,求證:BE=2OG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員選拔一人參加運動會,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán))
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)由表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的成績是 環(huán).
(2)結(jié)合平均水平與發(fā)揮穩(wěn)定性你認(rèn)為推薦誰參加比賽更適合,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)比較大;
①|(zhì)﹣2|+|3| |﹣2+3|;
②|4|+|3| |4+3|;
③|﹣|+|﹣| |﹣+(﹣)|;
④|﹣5|+|0| |﹣5+0|.
(2)通過(1)中的大小比較,猜想并歸納出|a|+|b|與|a+b|的大小關(guān)系,并說明a,b滿足什么關(guān)系時,|a|+|b|=|a+b|成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+4分別與x軸、y軸相交于點M,N,邊長為2的正方形OABC一個頂點O在坐標(biāo)系的原點,直線AN與MC相交于點P,若正方形繞著點O旋轉(zhuǎn)一周,則點P到點(0,2)長度的最小值是( )
A.2 ﹣2
B.3﹣2
C.
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com