【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對角線AC于點E,F,連接BE,DF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

【答案】1)見解析;(2)見解析.

【解析】

1)結(jié)合題目條件,通過證明△BCF≌△DAE來證明AE=CF即可;

2)由△BCF≌△DAE,得到BF=DE,而//,得到四邊形BFDE為平行四邊形,結(jié)合BE=DE,即可得證.

1)證明:四邊形ABCD為平行四邊形;

∴AD//BC,AD=BC

∴∠BCF=∠DAE;

∵DE//BF

∴∠BFE=∠DEF;

∴∠BFC=∠DEA;

△BCF△DAE中:

∴△BCF≌△DAEAAS

∴CF=AE

2)由(1)得△BCF≌△DAE;

∴BF=DE;

∵BF//DE

四邊形BFDE為平行四邊形;

∵BE=DE;

平行四邊形BFDE為菱形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,EBC的中點,以AC為直徑的⊙OAB邊交于點D,連接DE

(1)求證:DE⊙O的切線;

(2)CD6cm,DE5cm,求⊙O直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,EF分別是邊CD、AD上動點,AEBF交于點G

1)如圖(1),若E為邊CD的中點,AF=2FD,求AG的長.

2)如圖(2),若點FAD上從AD運動,點EDC上從DC運動,兩點同時出發(fā),同時到達各自終點,求在運動過程中,點G運動的路徑長.

3)如圖(3),若E、F分別是邊CD、AD上的中點,BDAE交于點H,求∠FBD的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽.并從參加比賽的學(xué)生中隨機抽取部分學(xué)生的演講成績進行統(tǒng)計(等級記為:優(yōu)秀,:良好,:一般,:較差),并制作了如下統(tǒng)計圖表(部分信息未給出).

等級

人數(shù)

20

10

請根據(jù)統(tǒng)計圖表中的信息解答下列問題:

1)這次共抽取了______名參加演講比賽的學(xué)生,統(tǒng)汁圖中________,_______;

2)求扇形統(tǒng)計圖中演講成績等級為“一般”所對應(yīng)扇形的圓心角的度數(shù);

3)若該校學(xué)生共2000人,如果都參加了演講比賽,請你估計成績達到優(yōu)秀的學(xué)生有多少人?

4)若演講比賽成績?yōu)?/span>等級的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從等級的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,請用列表或畫樹狀圖的方法求出“恰好抽中—名男生和一名女生”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】桌面上有四張正面分別標(biāo)有數(shù)字,,,的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗勻.

(1)隨機翻開一張卡片,正面所標(biāo)數(shù)字大于的概率為 ;

(2)隨機翻開一張卡片,從余下的三張卡片中再翻開一張,求翻開的兩張卡片正面所標(biāo)數(shù)字之和是偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子張或椅子把,現(xiàn)計劃用塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗,恰好配套),設(shè)用塊板材做椅子,用塊板材做桌子,則下列方程組正確的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PCAB于點E,且PA=PB.

(1)求證:PB是⊙O的切線;

(2)若∠APC=3BPC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點,點,與x軸交于另一點C,頂點為D,連接

(1)求該拋物線的解析式;

(2)點P為該拋物線上一動點(與點B,C不重合),設(shè)點P的橫坐標(biāo)為t

①當(dāng)點P在直線的下方運動時,求面積的最大值;

②該拋物線上是否存在點P,使得?若存在,請直接寫出點P的坐標(biāo)若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從機械廠購進甲、乙兩種零件進行銷售,若甲種零件每件的進價是乙種零件每件進價的,用1600元單獨購進一種零件時,購進甲種零件的數(shù)量比乙種零件的數(shù)量多4.

(1)求每件甲種零件和每件乙種零件的進價分別為多少元?

(2)若該商店計劃購進甲、乙兩種零件共110件,準(zhǔn)備將零件批發(fā)給零售商. 甲種零件的批發(fā)價是每件100元,乙種零件的批發(fā)價是每件130元,該商店計劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購進多少件甲種零件?

查看答案和解析>>

同步練習(xí)冊答案