【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的特征線.例如,點(diǎn)M13)的特征線有:x=1,y=3y=x+2,y=x+4.問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,AC分別在x軸和y軸上,拋物線經(jīng)過B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.

1)直接寫出點(diǎn)Dm,n)所有的特征線 ;

2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;

3)點(diǎn)PAB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A在平行于y軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?

【答案】1y=nx=m,y=-x+m+ny=x-m+n;(2;(3

【解析】

1)根據(jù)特征線的定義以及性質(zhì)直接求出點(diǎn)D的特征線;

2)由點(diǎn)D的一條特征線和正方形的性質(zhì)求出點(diǎn)D的坐標(biāo),從而求出拋物線解析式;

3)分平行于x軸和y軸兩種情況,由折疊的性質(zhì)計(jì)算即可.

1)∵點(diǎn)D

D的特征線是

2)∵點(diǎn)D有一條特征線是

∵拋物線的解析式為

∵四邊形OABC是正方形,且D點(diǎn)為正方形的對(duì)稱軸,

代入

解得

∴拋物線的解析式為

3)①如圖,當(dāng)點(diǎn)在平行于y軸的D點(diǎn)的特征線時(shí)

根據(jù)題意可得

∴拋物線需要向下平移的距離

②如圖,當(dāng)點(diǎn)在平行于x軸的D點(diǎn)的特征線時(shí),設(shè)

設(shè)

中,

解得

∴直線OP解析式為

∴拋物線需要向下平移的距離

即拋物線向下平移距離,其頂點(diǎn)落在OP上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)E是正方形ABCDCD上任意一點(diǎn),以DE為邊作正方形DEFG,連接BF,點(diǎn)M是線段BF中點(diǎn),射線EMBC交于點(diǎn)H,連接CM.

(1)請(qǐng)直接寫出CMEM的數(shù)量關(guān)系和位置關(guān)系;

(2)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°,此時(shí)點(diǎn)F恰好落在線段CD上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說明理由;

(3)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)E、G恰好分別落在線段AD、CD上,如圖3,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,點(diǎn)E、F在反比例函數(shù)y=x0)的圖象上,直線EF分別與x軸、y軸交于點(diǎn)A、B,且BE:BF=1:4,則EOF的面積是(  )

A.2B.C.D..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.

(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;

(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;

(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線上,若AB=13,CE=5,請(qǐng)畫出圖形,并直接寫出MF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,E對(duì)角線AC上一點(diǎn),連接DE.

1)如圖1,若E為對(duì)角線AC中點(diǎn),過點(diǎn)C、D分別作AC、DE的垂線相交于點(diǎn)F,連接AF,若AF10,求正方形ABCD的面積;

2)如圖2,把△ADE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△CDF,連接AF,取AF的中點(diǎn)為M,連接DM,求證:4DM2+AE22DF2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

19x2360

2x26x+50

3x24x+80

4)(x42﹣(52x20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ACB=90°,ABC=25°,OAB的中點(diǎn). OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ °OP0<θ<180,當(dāng)BCP恰為軸對(duì)稱圖形時(shí),θ的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店出售某品牌的棉衣,進(jìn)價(jià)為100/件,當(dāng)售價(jià)為150/件時(shí),平均每天可賣30件;為了盡快減少庫存迎接元旦的到來,商店決定降價(jià)銷售,增加利潤(rùn),經(jīng)調(diào)查每件降價(jià)5元,則每天可多賣10件,現(xiàn)要想平均每天獲利2000元,且讓顧客得到實(shí)惠,那么每件棉衣應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)如圖,在Rt△ABC中,∠ABC=90°AC的垂直平分線分別與AC,BCAB的延長(zhǎng)線相交于點(diǎn)D,EF,且BF=BC⊙O△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交于點(diǎn)H,連接BD、FH

1)求證:△ABC≌△EBF

2)試判斷BD⊙O的位置關(guān)系,并說明理由;

3)若AB=1,求HGHB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案