【題目】如圖,AB是⊙O的直徑,點(diǎn)E是上的一點(diǎn),∠DBC=∠BED.
(1)求證:BC是⊙O的切線(xiàn);
(2)已知AD=3,CD=2,求BC的長(zhǎng).
【答案】(1)證明見(jiàn)解析
(2)BC=
【解析】
試題(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線(xiàn);
(2)可證明△ABC∽△BDC,則,即可得出BC=.
試題解析:(1)∵AB是⊙O的切直徑,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切線(xiàn);
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=ACCD=(AD+CD)CD=10,
∴BC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2 -(m+1)x+2(m-1)=0,
(1)求證:無(wú)論m取何值時(shí),方程總有實(shí)數(shù)根;
(2)若等腰三角形腰長(zhǎng)為4,另兩邊恰好是此方程的根,求此三角形的另外兩條邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC 頂點(diǎn) A(2,3).若以原點(diǎn) O 為位似中心,畫(huà)三角形 ABC
的位似圖形△A′B′C′,使△ABC 與△A′B′C′的相似比為,則 A′的坐標(biāo)為( )
A. (3, ) B. ( ,6) C. (3, )或(-3,- ) D. ( ,6)或(- ,-6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的農(nóng)歷三月初一為通州風(fēng)箏節(jié).這天,小劉同學(xué)正在江海明珠廣場(chǎng)上放風(fēng)箏,如圖風(fēng)箏從A處起飛,幾分鐘后便飛達(dá)C處,此時(shí),在AQ延長(zhǎng)線(xiàn)上B處的小宋同學(xué),發(fā)現(xiàn)自己的位置與風(fēng)箏和廣場(chǎng)邊旗桿PQ的頂點(diǎn)P在同一直線(xiàn)上.
(1)已知旗桿高為10米,若在B處測(cè)得旗桿頂點(diǎn)P的仰角為30°,A處測(cè)得點(diǎn)P的仰角為45°,試求A、B之間的距離;
(2)此時(shí),在A(yíng)處背向旗桿又測(cè)得風(fēng)箏的仰角為75°,若繩子在空中視為一條線(xiàn)段,求繩子AC為多少米?(結(jié)果可保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4.動(dòng)點(diǎn)O在邊CA上移動(dòng),且⊙O的半徑為2.
(1)若圓心O與點(diǎn)C重合,則⊙O與直線(xiàn)AB________; (2)當(dāng)OC等于________時(shí),⊙O與直線(xiàn)AB相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請(qǐng)按下列要求畫(huà)圖:
(1)將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向下平移1個(gè)單位長(zhǎng)度,得到△A1B1C1,畫(huà)出△A1B1C1;
(2)畫(huà)出與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2,并直接寫(xiě)出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把n個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計(jì)算tan∠BA4C=_____,…按此規(guī)律,寫(xiě)出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鳳城中學(xué)九年級(jí)(3)班的班主任讓同學(xué)們?yōu)榘鄷?huì)活動(dòng)設(shè)計(jì)一個(gè)摸球方案,這些球除顏色外都相同,擬使中獎(jiǎng)概率為50%.
(1)小明的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入黃、白兩種顏色的球共6個(gè),攪勻后從中任意摸出1個(gè)球,摸到黃球則表示中獎(jiǎng),否則不中獎(jiǎng).如果小明的設(shè)計(jì)符合老師要求,則盒子中黃球應(yīng)有 個(gè),白球應(yīng)有 個(gè);
(2)小兵的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入2個(gè)黃球和1個(gè)白球,攪勻后從中任意摸出2個(gè)球,摸到的2個(gè)球都是黃球則表示中獎(jiǎng),否則不中獎(jiǎng),該設(shè)計(jì)方案是否符合老師的要求?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某地區(qū)一條公路隧道入口在平面直角坐標(biāo)系中的示意圖,點(diǎn)A和A1、點(diǎn)B和B1分別關(guān)于y軸對(duì)稱(chēng).隧道拱部分BCB1為一段拋物線(xiàn),最高點(diǎn)C離路面AA1的距離為8 m,點(diǎn)B離路面AA1的距離為6 m,隧道寬AA1為16 m.
(1)求隧道拱部分BCB1對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)現(xiàn)有一大型貨車(chē),裝載某大型設(shè)備后,寬為4 m,裝載設(shè)備的頂部離路面均為7 m,問(wèn):它能否安全通過(guò)這個(gè)隧道?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com