【題目】某大型超市從生產(chǎn)基地購進一批水果,運輸過程中質(zhì)量損失10%,假設(shè)不計超市其他費用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進價的基礎(chǔ)上應(yīng)至少提高( )

A. 40% B. 33.4% C. 33.3% D. 30

【答案】B

【解析】設(shè)購進這種水果a千克,進價為b/千克,這種水果的售價在進價的基礎(chǔ)上應(yīng)提高x,則售價為(1+x)b/千克,根據(jù)題意得:購進這批水果用去ab元,但在售出時,水果只剩下(1﹣10%)a千克,售貨款為(1﹣10%)a(1+x)b=0.9a(1+x)b元,

由題意得: [0.9a(1+x)b-ab]÷ab·100%≥20%,解得x≥ . ∵超市要想至少獲得20%的利潤,∴這種水果的售價在進價的基礎(chǔ)上應(yīng)至少提高33.4%. 故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究1)如圖1,把ABC沿DE折疊,使點A落在點A’處,請你判斷∠1+2與∠A的關(guān)系?直接寫出結(jié)論,不必說明理由.

思考2)如圖2,BI平分∠ABCCI平分∠ACB,把ABC折疊,使點A與點I重合,若∠1+2=130°,求∠BIC的度數(shù);

應(yīng)用3)如圖3,在銳角ABC中,BFAC于點FCGAB于點G,BF、CG交于點H,把ABC折疊使點A和點H重合,試探索∠BHC與∠1+2的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點A與表示-1的點的距離為3,則點A所表示的數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)的圖象上的一個動點,連接OA,若將線段O A繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖象的函數(shù)表達式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若﹣5xm+3y2x4yn+3是同類項,則m+n=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5=3,<4=5,<﹣1.5=﹣1.解決下列問題:

1[﹣4.5]=________,<3.5=________

2)若[x]=2,則x的取值范圍是________;若<y=﹣1,則y的取值范圍是________

3)已知x,y滿足方程組,求x,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:(每小題5分,共計10)

(1) 0.5 x 0.76.51.3 x (2) 1;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于點BC.則以下結(jié)論:

①無論x取何值,y2的值總是正數(shù);

a=1

③當(dāng)x=0時,y2﹣y1=4

2AB=3AC

其中正確結(jié)論是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(5,0),點B的坐標(biāo)為(3,2),直線經(jīng)過原點和點B,直線經(jīng)過點A和點B.

1)求直線, 的函數(shù)關(guān)系式;

2)根據(jù)函數(shù)圖像回答:不等式的解集為 ;

3)若點軸上的一動點,經(jīng)過點P作直線軸,交直線于點C,交直線于點D,分別經(jīng)過點C,D軸作垂線,垂足分別為點E, F,得長方形CDFE.

①若設(shè)點P的橫坐標(biāo)為m,則點C的坐標(biāo)為(m ),點D的坐標(biāo)為(m, );(用含字母m的式子表示)

②若長方形CDFE的周長為26,求m的值.

查看答案和解析>>

同步練習(xí)冊答案