如圖,AB∥GH∥CD,點H在BC上,AC與BD交于點G,AB=2,CD=3,則GH的長為   

解析試題分析:∵AB∥GH,∴△CGH∽△CAB!,即①,
∵GH∥CD,∴△BGH∽△BDC!,即②,
①+②,得
∵CH+BH=BC,∴,解得GH=。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:填空題

已知線段滿足,則          .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,路燈距離地面8米,身高1.6米的小明站在距離燈的底部(點O)20米的A處,則小明的影子AM長為    米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知△ADE∽△ABC,AD=2,BD=4,DE=1.5,則BC的長為         .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,,,則    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知矩形ABCD中,AB=1,在BC上取一點E,沿AE將△ABE向上折疊,使B點落在AD上的F點.若四邊形EFDC與矩形ABCD相似,則AD=       .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

巡警小張在犯罪現(xiàn)場發(fā)現(xiàn)一只腳印,他把隨身攜帶的一百元鈔票放在腳印旁進行拍照,照片送到刑事科,他們測得照片中的腳印和鈔票的長度分別為5cm和3.1cm,一張百元鈔票的實際長度大約為15.5cm,請問腳印的實際長度為_______cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個用足夠長的的細鐵絲制作的直角的頂點D放在直角三角板ABC的斜邊AB上,再將該直角繞點D旋轉(zhuǎn),并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點。
問題探究:(1)在旋轉(zhuǎn)過程中,
①如圖2,當AD=BD時,線段DP、DQ有何數(shù)量關(guān)系?并說明理由。
②如圖3,當AD=2BD時,線段DP、DQ有何數(shù)量關(guān)系?并說明理由。
③根據(jù)你對①、②的探究結(jié)果,試寫出當AD=nBD時,DP、DQ滿足的數(shù)量關(guān)系為_______________(直接寫出結(jié)論,不必證明)
(2)當AD=BD時,若AB=20,連接PQ,設(shè)△DPQ的面積為S,在旋轉(zhuǎn)過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由。

圖1              圖2                 圖3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

(2013年四川眉山3分)如圖,△ABC中,E、F分別是AB、AC上的兩點,且,若△AEF的面積為2,則四邊形EBCF的面積為   

查看答案和解析>>

同步練習冊答案