【題目】甲、乙兩工程隊共同承建某高速路隧道工程,隧道總長2000米,甲、乙分別從隧道兩端向中間施工,計劃每天各施工6米.因地質情況不同,兩支隊伍每合格完成1米隧道施工所需成本不一樣.甲每合格完成1米,隧道施工成本為6萬元;乙每合格完成1米,隧道施工成本為8萬元.
(1)若工程結算時乙總施工成本不低于甲總施工成本的,求甲最多施工多少米?
(2)實際施工開始后因地質情況比預估更復雜,甲乙兩隊每日完成量和成本都發(fā)生變化.甲每合格完成1米隧道施工成本增加m萬元時,則每天可多挖m米,乙因特殊地質,在施工成本不變的情況下,比計劃每天少挖m米,若最終每天實際總成本比計劃多(11m-8)萬元,求m的值.
【答案】(1)1000米;(2)4
【解析】
(1)設甲工程隊施工x米,則乙工程隊施工(2000-x)米,由工程結算時乙總施工成本不低于甲總施工成本的,即可得出關于x的一元一次不等式,解之取其中的最大值即可得出結論;
(2)根據(jù)總成本=每米施工成本×每天施工的長度結合每天實際總成本比計劃多(11m-8)萬元,即可得出關于m的一元二次方程,解之即可得出結論.
解:(1)設甲工程隊施工x米,則乙工程隊施工(2000-x)米,
依題意,得:8(2000-x)≥×6x,
解得:x≤1000.
答:甲最多施工1000米.
(2)依題意,得:(6+m)(6+m)+8(6-m)=6×(6+8)+11m-8,
整理,得:m2-8m+16=0,
解得:m1=m2=4.
答:m的值為4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,RT△ABC中,,. 動點同時分別從點出發(fā),分別沿著射線和射線的方向均以每秒1個單位的速度運動,連接,以為直徑作交射線于點,連接,設運動的時間為.
(1)當點在線段上時,用關于的代數(shù)式表示________,________. (直接寫出結果)
(2)在整個運動過程中,當為何值時,以點、、為頂點的三角形與以點、、為頂點的三角形相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點,B兩點,與y軸交于點,拋物線的頂點在直線上.
(1)求拋物線的解析式;
(2)點P為第一象限內拋物線上的一個動點,過點P做軸交BC于點Q,求線段PQ長度的最大值,及此時點P的坐標;
(3)點M在x軸上,點N在拋物線的對稱軸上,若以點M,N,C,B為頂點的四邊形是平行四邊形,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點O為對角線BD的中點,點E為邊AD上一點,連接OE,將△DOE沿OE翻折得到△OEF,若OF⊥AD于點G,則OE=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線的圖象交x軸于A(﹣2,0)和點B,交y軸負半軸于點C,且OB=OC,下列結論:
①2b﹣c=2;②a=;③ac=b﹣1;④>0
其中正確的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的解析式.
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?求P坐標及最大面積是多少?
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,直接寫出M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐探究幾何元素之間的關系
問題情境:四邊形ABCD中,點O是對角線AC的中點,點E是直線AC上的一個動點(點E與點C,O,A都不重合),過點A,C分別作直線BE的垂線,垂足分別為F,G,連接OF,OG.
(1)初步探究:
如圖1,已知四邊形ABCD是正方形,且點E在線段OC上,求證;
(2)深入思考:請從下面A,B兩題中任選一題作答,我選擇_______題.
A.探究圖1中OF與OG的數(shù)量關系并說明理由;
B.如圖2,已知四邊形ABCD為菱形,且點E在AC的延長線上,其余條件不變,探究OF與OG的數(shù)量關系并說明理由;
(3)拓展延伸:請從下面AB兩題中任選一題作答,我選擇_______題.
如圖3,已知四邊形ABCD為矩形,且,.
A.點E在直線AC上運動的過程中,若,則FG的長為________.
B.點E在直線AC上運動的過程中,若,則FG的長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;(2)若AE=5,OE=3,求線段CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com