如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8).動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥BC,交AC于P,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)P點(diǎn)的坐標(biāo)為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時(shí)x的值;
(3)請(qǐng)你探索:當(dāng)x為何值時(shí),△MPA是一個(gè)等腰三角形?你發(fā)現(xiàn)了幾種情況?寫(xiě)出你的研究成果.
(1)由題意可知C(0,8),又A(6,0),
所以直線(xiàn)AC解析式為:y=-
4
3
x+8,
因?yàn)镻點(diǎn)的橫坐標(biāo)與N點(diǎn)的橫坐標(biāo)相同為6-x,代入直線(xiàn)AC中得y=
4
3
x
,
所以P點(diǎn)坐標(biāo)為(6-x,
4
3
x);

(2)設(shè)△MPA的面積為S,在△MPA中,MA=6-x,MA邊上的高為
4
3
x,
其中,0≤x<6,
∴S=
1
2
(6-x)×
4
3
x=
2
3
(-x2+6x)=-
2
3
(x-3)2+6,
∴S的最大值為6,此時(shí)x=3;
(3)延長(zhǎng)NP交x軸于Q,則有PQ⊥OA
①若MP=PA,
∵PQ⊥MA,
∴MQ=QA=x,
∴3x=6,
∴x=2;
②若MP=MA,則MQ=6-2x,PQ=
4
3
x,PM=MA=6-x,
在Rt△PMQ中,
∵PM2=MQ2+PQ2
∴(6-x)2=(6-2x)2+(
4
3
x)2,
∴x=
108
43

③若PA=AM,
∵PA=
5
3
x,AM=6-x,
5
3
x=6-x,
∴x=
9
4
,
綜上所述,x=2,或x=
108
43
,或x=
9
4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平面直角坐標(biāo)系中,A、B、C三點(diǎn)的坐標(biāo)分別是(0,2)、(0,-2),(4,-2).
(1)請(qǐng)?jiān)诮o出的直角坐標(biāo)系xOy中畫(huà)出△ABC,設(shè)AC交X軸于點(diǎn)D,連接BD,證明:OD平分∠ADB;
(2)請(qǐng)?jiān)趚軸上找出點(diǎn)E,使四邊形AOCE為平行四邊形,寫(xiě)出E點(diǎn)坐標(biāo),并證明四邊形AOCE是平行四邊形;
(3)設(shè)經(jīng)過(guò)點(diǎn)B,且以CE所在直線(xiàn)為對(duì)稱(chēng)軸的拋物線(xiàn)的頂點(diǎn)為F,求直線(xiàn)FA的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n.
(1)求拋物線(xiàn)的解析式;
(2)設(shè)(1)中的拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,求C、D點(diǎn)的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,交拋物線(xiàn)于點(diǎn)H,若直線(xiàn)BC把△PCH分成面積相等的兩部分,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=4,該拋物線(xiàn)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A、C坐標(biāo)為(2,0)、(0,3).
(1)求此拋物線(xiàn)的解析式;
(2)拋物線(xiàn)上有一點(diǎn)P,使以PC為直徑的圓過(guò)B點(diǎn),求P的坐標(biāo);
(3)在滿(mǎn)足(2)的條件下,x軸上是否存在點(diǎn)E,使得△COE與△PBC相似?若存在,求出E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線(xiàn)y1=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,對(duì)稱(chēng)軸為直線(xiàn)x=1,且A、C兩點(diǎn)的坐標(biāo)分別為A(-1,0)、C(0,-3).
(1)求拋物線(xiàn)y1=ax2+bx+c和直線(xiàn)BC:y2=mx+n的解析式;
(2)當(dāng)y1•y2≥0時(shí),直接寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)拋物線(xiàn)C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點(diǎn)為A,B,點(diǎn)A的坐標(biāo)是(2,4),點(diǎn)B的橫坐標(biāo)是-2.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)D在線(xiàn)段AB上,過(guò)D作x軸的垂線(xiàn),垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG.記過(guò)C2頂點(diǎn)M的直線(xiàn)為l,且l與x軸交于點(diǎn)N.
①若l過(guò)△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1,2),求點(diǎn)N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=2,頂點(diǎn)A的縱坐標(biāo)為1,點(diǎn)B(4,0)在此拋物線(xiàn)上.

(1)求此拋物線(xiàn)的解析式;
(2)若此拋物線(xiàn)對(duì)稱(chēng)軸與x軸交點(diǎn)為C,點(diǎn)D(x,y)為拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)D作直線(xiàn)y=2的垂線(xiàn),垂足為E.
①用含y的代數(shù)式表示CD2,并猜想CD2與DE2之間的數(shù)量關(guān)系,請(qǐng)給出證明;
②在此拋物線(xiàn)上是否存在點(diǎn)D,使∠EDC=120°?如果存在,請(qǐng)直接寫(xiě)出D點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2一g一•昆明)在平面直角坐標(biāo)系v,拋物線(xiàn)經(jīng)過(guò)O(一,一)、A(4,一)、E(九,-
2
)三點(diǎn).
(g)求此拋物線(xiàn)的解析式;
(2)以O(shè)A的v點(diǎn)M為圓心,OM長(zhǎng)為半徑作⊙M,在(g)v的拋物線(xiàn)上是否存在這樣的點(diǎn)P,過(guò)點(diǎn)P作⊙M的切線(xiàn)l,且l與x軸的夾角為九一°?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注意:本題v的結(jié)果可保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,有一座拋物線(xiàn)形的拱橋,橋下面處在目前的水位時(shí),水面寬AB=10m,如果水位上升2m,就將達(dá)到警戒線(xiàn)CD,這時(shí)水面的寬為8m.若洪水到來(lái),水位以每小時(shí)0.1m速度上升,經(jīng)過(guò)多少小時(shí)會(huì)達(dá)到拱頂?

查看答案和解析>>

同步練習(xí)冊(cè)答案