【題目】正方形ABCD中,點(diǎn)M是直線BC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),作射線DM,過(guò)點(diǎn)BBNDM于點(diǎn)N,連接CN

1)如圖1,當(dāng)點(diǎn)MBC上時(shí),如果∠CDM=25°,那么∠MBN的度數(shù)是

2)如圖2,當(dāng)點(diǎn)MBC的延長(zhǎng)線上時(shí),

①依題意補(bǔ)全圖2;

②用等式表示線段NB,NCND之間的數(shù)量關(guān)系,并證明.

【答案】1;(2)①見(jiàn)解析;②,見(jiàn)解析.

【解析】

1)由正方形的性質(zhì)和對(duì)頂角相等、三角形內(nèi)角和定理得出∠MBN=CDM=25°即可;

2)①由題意補(bǔ)全圖形即可;

②當(dāng)NDM上時(shí),在NB上截取BE=ND,證明△CDN≌△CBE得出NC=EC,∠DCN=BCE,證出∠NCE=BCD=90°,得出△NCE是等腰直角三角形,得出NE=NC,即可得出結(jié)論;

當(dāng)NMD延長(zhǎng)線上時(shí),延長(zhǎng)NBE,使BE=ND,同理得:△CDN≌△CBE,得出NC=EC,∠DCN=BCE,證出∠NCE=BCD=90°,得出△NCE是等腰直角三角形,證出NE=NC,即可得出結(jié)論.

解:(1)∵四邊形ABCD是正方形,

BC=CD,∠DCM=BCD=90°,

BNDM,

∴∠DNB=90°=BCD,

∵∠BMN=DMC,

∴∠MBN=CDM=25°;

故答案為:25°;

2)①由題意補(bǔ)全圖形如圖2、圖4所示;

②線段NBNCND之間的數(shù)量關(guān)系為:NB=ND+NC,或NC=NB+ND

理由如下:

當(dāng)NDM上時(shí),在NB上截取BE=ND,

∵∠MCD=BNM=90°,

∴∠DMC+CDN=DMC+CBE=90°,

∴∠CDN=CBE,

在△CDN和△CBE中,

,

∴△CDN≌△CBESAS),

NC=EC,∠DCN=BCE,

∴∠NCE=DCN+DCE=BCE+DCE=BCD=90°,

∴△NCE是等腰直角三角形,

NE=NC,

NB=BE+NE=ND+NC;

當(dāng)NMD延長(zhǎng)線上時(shí),延長(zhǎng)NBE,使BE=ND,

同理得:△CDN≌△CBE,

NC=EC,∠DCN=BCE,

∴∠NCE=DCN+DCE=BCE+DCE=BCD=90°,

∴△NCE是等腰直角三角形,

NE=NC,

NE=NB+BE

NC=NB+ND

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】簡(jiǎn)答題:

1)當(dāng)為何值時(shí),關(guān)于的方程是一元二次方程?

2)已知關(guān)于的一元二次方程有一個(gè)根是0,求的值.

3)在第(2)題中,如果要使已知方程有一個(gè)根是l,那么m應(yīng)該等于什么數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】天空中有一個(gè)靜止的廣告氣球C,從地面A點(diǎn)測(cè)得C點(diǎn)的仰角為45°,從地面B測(cè)得仰角為60°,已知AB=20米,點(diǎn)C和直線AB在同一鉛垂平面上,求氣球離地面的高度.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直角梯形中,,,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿邊向點(diǎn)以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā),在邊上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為(秒),

1)①設(shè)的面積為,求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

②當(dāng)為何值時(shí),?能不能等于?為什么?

2)①當(dāng)為何值時(shí),?

②當(dāng)為何值時(shí),點(diǎn)是在的垂直平分線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,為正方形的邊上一點(diǎn),將正方形沿折疊,點(diǎn)落在點(diǎn)處,連接并延長(zhǎng),交于點(diǎn),求證:

2)如圖2,點(diǎn)分別在邊上,且,求證:

3)如圖3,點(diǎn)分別在邊上,點(diǎn)分別在邊上,于點(diǎn),已知,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)÷7;

(2);

(3);

(4);

(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店購(gòu)進(jìn)一批甲、乙兩種款型襯衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價(jià)比乙種款型每件的進(jìn)價(jià)少30.

(1)求甲、乙兩種款型的襯衫各購(gòu)進(jìn)多少件?

(2)商店進(jìn)價(jià)提高60%標(biāo)價(jià)銷售,銷售一段時(shí)間后,甲款型全部售完,乙款型剩余一半,商店決定對(duì)乙款型剩余的按標(biāo)價(jià)的五折降價(jià)銷售,很快全部售完。求售完這批襯衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)到3秒鐘時(shí),兩點(diǎn)相距15個(gè)單位長(zhǎng)度.已知?jiǎng)狱c(diǎn)A、B的運(yùn)動(dòng)速度比之是32(速度單位:1個(gè)單位長(zhǎng)度/秒).

1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;

2A、B兩點(diǎn)運(yùn)動(dòng)到3秒時(shí)停止運(yùn)動(dòng),請(qǐng)?jiān)跀?shù)軸上標(biāo)出此時(shí)A、B兩點(diǎn)的位置;

3)若A、B兩點(diǎn)分別從(2)中標(biāo)出的位置再次同時(shí)開(kāi)始在數(shù)軸上運(yùn)動(dòng),運(yùn)動(dòng)的速度不變,運(yùn)動(dòng)的方向不限,問(wèn):經(jīng)過(guò)幾秒鐘,A、B兩點(diǎn)之間相距4個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角三角形ABC中,∠ACB=90°,EAB上一點(diǎn),且CE=EBED⊥CBD,則下列結(jié)論中不一定成立的是(  )

A.AE=BEB.CE=ABC.∠CEB=2∠AD.AC=AB

查看答案和解析>>

同步練習(xí)冊(cè)答案