【題目】如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時,求∠BAE的度數(shù).

【答案】
(1)

證明:∵AC=AD,

∴∠ACD=∠ADC,

又∵∠BCD=∠EDC=90°,

∴∠ACB=∠ADE,

在△ABC和△AED中,

,

∴△ABC≌△AED(SAS);


(2)

解:當(dāng)∠B=140°時,∠E=140°,

又∵∠BCD=∠EDC=90°,

∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.


【解析】(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進(jìn)而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應(yīng)角相等,運用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示三角形ABC是等邊三角形,DBC邊上的一點,三角形ABD經(jīng)過旋轉(zhuǎn)后到達(dá)三角形ACE的位置.

(1)旋轉(zhuǎn)中心是哪一點?

(2)旋轉(zhuǎn)了多少度?

(3)如果MAB的中點,那么經(jīng)過上述旋轉(zhuǎn)后,M到了什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在等邊ABC中,D是邊AC上一點,連接BD,將BCD繞點B逆時針旋轉(zhuǎn)60°,得到BAE,連接ED,若BC=5,BD=4.則下列結(jié)論錯誤的是( ).

A.AEBC B. ADE=BDC

C.BDE是等邊三角形 D. ADE的周長是9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7張如圖1所示的長為a,寬為b(a>b)的小長方形紙片按圖2所示的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,求ab滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,

(1)如果∠AOB=90°,BOC=38°,求∠DOE的度數(shù);

(2)如果∠AOB=α,BOC=β(α、β均為銳角,αβ),其他條件不變,求∠DOE;

(3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律,請寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y1=x+my軸交于點A06),直線l2y=kx+1分別與x軸交于點B2,0),與y軸交于點C,兩條直線交點記為D

1m=   ,k=   ;

2)求兩直線交點D的坐標(biāo);

3)根據(jù)圖象直接寫出y1y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內(nèi)部)經(jīng)過B、C兩點,交AB于點E,過點E作⊙O的切線交AC于點F.延長CO交AB于點G,作ED∥AC交CG于點D

(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為(
A.5πcm2
B.10πcm2
C.15πcm2
D.20πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則cos∠AEF的值是

查看答案和解析>>

同步練習(xí)冊答案