【題目】如圖,在△ABC中,點(diǎn)M、N是∠ABC與∠ACB三等分線的交點(diǎn),連接MN

1)求證:MN平分∠BMC

2)若∠A60°,求∠BMN的度數(shù).

【答案】1)詳見解析;(250°.

【解析】

1)過(guò)點(diǎn)NNGBCG,NEBMENFCMF,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得NE=NG=NF,再根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出MN平分∠BMC;

2)根據(jù)三角形內(nèi)角和等于180°求出∠ABC+ACB,再根據(jù)角的三等分求出∠MBC+MCB的度數(shù),然后利用三角形內(nèi)角和定理求出∠BMC的度數(shù),從而得解.

1)如圖,過(guò)點(diǎn)NNGBCGNEBME,NFCMF

∵點(diǎn)M、N是∠ABC與∠ACB三等分線的交點(diǎn),

BN平分∠MBC,CN平分∠MCB

又∵NGBC,NEBM,NFCM,

NE=NGNF=NG,

NE=NF,

MN平分∠BMC;

2)∵MN平分∠BMC

∴∠BMNBMC

∵∠A=60°,

∴∠ABC+ACB=180°﹣∠A=180°﹣60°=120°.

∵點(diǎn)M、N是∠ABC與∠ACB三等分線的交點(diǎn),

∴∠MBC+MCB(∠ABC+ACB120°=80°,

∴在△BMC中,∠BMC=180°﹣(∠MBC+MCB=180°﹣80°=100°,

∴∠BMN100°=50°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)美麗撫順的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長(zhǎng)的道路少用3天.

(1)甲、乙兩工程隊(duì)每天能改造道路的長(zhǎng)度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬(wàn)元,乙隊(duì)工作一天需付費(fèi)用5萬(wàn)元,如需改造的道路全長(zhǎng)1200米,改造總費(fèi)用不超過(guò)145萬(wàn)元,至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A-3,3),B-5,1),C-2,0),Pa,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過(guò)平移后得到△A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1a+6b-2).

1)直接寫出點(diǎn)A1,B1C1的坐標(biāo).

2)在圖中畫出△A1B1C1

3)連接AA1,求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE∠BAC的外角平分線AD相交于點(diǎn)P,分別交ACBC的延長(zhǎng)線于E,D.過(guò)PPF⊥ADAC的延長(zhǎng)線于點(diǎn)H,交BC的延長(zhǎng)線于點(diǎn)F,連接AFDH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,等腰直角△ABOO點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),直角頂點(diǎn)B在第二象限,等腰直角△BCDC點(diǎn)在y軸上移動(dòng),我們發(fā)現(xiàn)直角頂點(diǎn)D點(diǎn)隨之在一條直線上移動(dòng),這條直線的解析式是( 。

A. y=﹣2x+1 B. y=﹣x+2 C. y=﹣3x﹣2 D. y=﹣x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC45°,ADBE分別為BC,AC邊上的高,連接DE,過(guò)點(diǎn)DDFDEBE于點(diǎn)F,GBE中點(diǎn),連接AFDG

1)如圖1,若點(diǎn)F與點(diǎn)G重合,求證:AFDF;

2)如圖2,請(qǐng)寫出AFDG之間的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:小明遇到這樣一個(gè)問(wèn)題:已知:在ABC中,AB,BC,AC三邊的長(zhǎng)分別為,求ABC的面積.小明是這樣解決問(wèn)題的:如圖①所示,先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)ABC(即ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),從而借助網(wǎng)格就能計(jì)算出ABC的面積.他把這種解決問(wèn)題的方法稱為構(gòu)圖法.請(qǐng)回答:

1)圖1ABC的面積為   

參考小明解決問(wèn)題的方法,完成下列問(wèn)題:

2)圖2是一個(gè)6×6的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1).

①利用構(gòu)圖法在答卷的圖2中畫出三邊長(zhǎng)分別為、2的格點(diǎn)DEF;

②計(jì)算DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個(gè)動(dòng)點(diǎn),FAB邊上一點(diǎn),∠AEF=30°.設(shè)DE=x,圖中某條線段長(zhǎng)為y,yx滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一條河的兩岸BC與DE互相平行,兩岸各有一排景觀燈(圖中黑點(diǎn)代表景觀燈),每排相鄰兩景觀燈的間隔都是10 m,在與河岸DE的距離為16 m的A處(AD⊥DE)看對(duì)岸BC,看到對(duì)岸BC上的兩個(gè)景觀燈的燈桿恰好被河岸DE上兩個(gè)景觀燈的燈桿遮。影禗E上的兩個(gè)景觀燈之間有1個(gè)景觀燈,河岸BC上被遮住的兩個(gè)景觀燈之間有4個(gè)景觀燈,求這條河的寬度.

查看答案和解析>>

同步練習(xí)冊(cè)答案