【題目】在連接A、B兩市的公路之間有一個機(jī)場C,機(jī)場大巴由A市駛向機(jī)場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場大巴、貨車到機(jī)場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系圖象.
(1)直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時間.
(2)求機(jī)場大巴到機(jī)場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式.
(3)求機(jī)場大巴與貨車相遇地到機(jī)場C的路程.
【答案】(1)連接A、B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時間為h;(2)y=﹣80x+60(0≤x≤);(3)機(jī)場大巴與貨車相遇地到機(jī)場C的路程為km.
【解析】分析:(1)根據(jù)可求出連接A、B兩市公路的路程,再根據(jù)貨車h行駛20km可求出貨車行駛60km所需時間;
(2)根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出機(jī)場大巴到機(jī)場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式;
(3)利用待定系數(shù)法求出線段ED對應(yīng)的函數(shù)表達(dá)式,聯(lián)立兩函數(shù)表達(dá)式成方程組,通過解方程組可求出機(jī)場大巴與貨車相遇地到機(jī)場C的路程.
詳解:(1)60+20=80(km),
(h).
∴連接A.B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時間為h.
(2)設(shè)所求函數(shù)表達(dá)式為y=kx+b(k≠0),
將點(diǎn)(0,60)、代入y=kx+b,
得: 解得:
∴機(jī)場大巴到機(jī)場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式為
(3)設(shè)線段ED對應(yīng)的函數(shù)表達(dá)式為y=mx+n(m≠0),
將點(diǎn)代入y=mx+n,
得: 解得:
∴線段ED對應(yīng)的函數(shù)表達(dá)式為
解方程組得
∴機(jī)場大巴與貨車相遇地到機(jī)場C的路程為km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于給定的二次函數(shù)y=a(x﹣h)2+k(a≠0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.
(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達(dá)式為_____;
(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點(diǎn)在其伴生一次函數(shù)的圖象上;
(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)B、A,且兩函數(shù)圖象的交點(diǎn)的橫坐標(biāo)分別為1和2,在∠AOB內(nèi)部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動點(diǎn)P,過點(diǎn)P作x軸的平行線與其伴生一次函數(shù)的圖象交于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為n,直接寫出線段PQ的長為時n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
求出拋物線的對稱軸和頂點(diǎn)坐標(biāo);
在直角坐標(biāo)系中,直接畫出拋物線(注意:關(guān)鍵點(diǎn)要準(zhǔn)確,不必寫出畫圖象的過程);
根據(jù)圖象回答:
①取什么值時,拋物線在軸的上方?
②取什么值時,的值隨的值的增大而減小?
根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元.
(1)商家一次購買這種產(chǎn)品多少件時,銷售單價(jià)恰好為2600元?
(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤最大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元(其它銷售條件不變)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D,下列四個結(jié)論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點(diǎn)O到△ABC各邊的距離相等;
④設(shè)OD=m,AE+AF=n,則S△AEF=mn.
其中正確的結(jié)論是( 。
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某一次實(shí)驗(yàn)中,測得兩個變量之間的關(guān)系如下表所示:
自變量x | 1 | 2 | 3 | 4 | 12 | |
因變量y | 12.03 | 5.98 | 3.04 | 1.99 | 1.00 |
請你根據(jù)表格回答下列問題:
① 這兩個變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請你簡要說明理由。
②請你寫出這個函數(shù)的解析式。
③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com