【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過(guò)點(diǎn)A(3,0)、B(0,﹣3),點(diǎn)P是直線AB上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長(zhǎng)時(shí),求△ABM的面積.
(3)是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)拋物線的解析式是y=,直線AB的解析式是y=x-3;
(2);
(3)存在,P點(diǎn)的橫坐標(biāo)是或;
【解析】試題分析:(1)分別利用待定系數(shù)法求兩函數(shù)的解析式:把A(3,0)B(0,﹣3)分別代入與,得到關(guān)于m、n的兩個(gè)方程組,解方程組即可;
(2)設(shè)點(diǎn)P的坐標(biāo)是(, ),則M(, ),用P點(diǎn)的縱坐標(biāo)減去M的縱坐標(biāo)得到PM的長(zhǎng),即PM=()﹣()=,然后根據(jù)二次函數(shù)的最值得到
當(dāng)時(shí),PM最長(zhǎng)為,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計(jì)算即可;
(3)由PM∥OB,根據(jù)平行四邊形的判定得到當(dāng)PM=OB時(shí),點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形,然后討論:當(dāng)P在第四象限:PM=OB=3,PM最長(zhǎng)時(shí)只有,所以不可能;當(dāng)P在第一象限:PM=OB=3,( )﹣()=3;當(dāng)P在第三象限:PM=OB=3, ,分別解一元二次方程即可得到滿足條件的t的值.
試題解析:(1)把A(3,0)B(0,﹣3)代入,得: ,解得,
所以拋物線的解析式是.
設(shè)直線AB的解析式是,
把A(3,0)B(0,﹣3)代入,得: ,解得: ,
所以直線AB的解析式是;
(2)設(shè)點(diǎn)P的坐標(biāo)是(, ),則M(, ),因?yàn)?/span>p在第四象限,
所以PM=()﹣()=,
當(dāng)時(shí),二次函數(shù)的最大值,即PM最長(zhǎng)值為,
則S△ABM=S△BPM+S△APM=;
(3)存在,理由如下:∵PM∥OB,
∴當(dāng)PM=OB時(shí),點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形,
①當(dāng)P在第四象限:PM=OB=3,PM最長(zhǎng)時(shí)只有,所以不可能有PM=3.
②當(dāng)P在第一象限:PM=OB=3,( )﹣()=3,解得, (舍去),所以P點(diǎn)的橫坐標(biāo)是;
③當(dāng)P在第三象限:PM=OB=3, ,解得(舍去),,所以P點(diǎn)的橫坐標(biāo)是.所以P點(diǎn)的橫坐標(biāo)是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(0, ).
(1)求拋物線的解析式.
(2)拋物線與軸交于另一個(gè)交點(diǎn)為C,點(diǎn)D在線段AC上,已知AD=AB,若動(dòng)點(diǎn)P從A出發(fā)沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從B出發(fā)沿線段BC勻速運(yùn)動(dòng),問是否存在某一時(shí)刻,使線段PQ被直線BD垂直平分,若存在,求出點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的前提下,過(guò)點(diǎn)B的直線與軸的負(fù)半軸交于點(diǎn)M,是否存在點(diǎn)M,使以A、B、M為頂點(diǎn)的三角形與相似,如果存在,請(qǐng)直接寫出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角梯形ABCD中,∠A=∠D=90°,DC<AB,AB=AD=12,E是邊AD上的一點(diǎn),恰好使CE=10,并且∠CBE=45°,則AE的長(zhǎng)是( 。
A.2或8
B.4或6
C.5
D.3或7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生參加體育活動(dòng)的情況,學(xué)校對(duì)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,其中一個(gè)問題是“你平均每天參加體育活動(dòng)的時(shí)間是多少”,共有4個(gè)選項(xiàng):A 1.5小時(shí)以上;B 1~1.5小時(shí);C 0.5~1小時(shí);D 0.5小時(shí)以下.圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了多少名學(xué)生?
(2)在圖1中將選項(xiàng)B的部分補(bǔ)充完整;
(3)若該校有3000名學(xué)生,你估計(jì)全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動(dòng)的時(shí)間在0.5小時(shí)以下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌,若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(-8m4n+12m3n2-4m2n3)÷(-4m2n) 的結(jié)果是( )
A. 2m2n-3m+n2 B. 2m2-3nm2+n2
C. 2m2-3mn+n D. 2m2-3mn+n2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)的圖像分別交x軸、y軸于A、B兩點(diǎn),且與反比例函數(shù)( >0)的圖像在第一象限交于點(diǎn)C(4,n),CD⊥x軸于D.
(1)求m、n的值;
(2)求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC的度數(shù)為( )
A. 55° B. 50° C. 45° D. 35°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com