【題目】綜合題。
(1)解不等式3(x+2)﹣1≥5﹣2(x﹣2),并把解集在數(shù)軸上表示出來
(2)解不等式組

【答案】
(1)解:去括號得,3x+6﹣1≥5﹣2x+4,

移項得,3x+2x≥5+4﹣6+1,

合并同類項得,5x≥4,

把x的系數(shù)化為1得,x≥ ,

在數(shù)軸上表示為:


(2)解:

由①得,x>﹣6,

由②得,x≤13,

故不等式組的解集為:﹣6<x≤13


【解析】(1)先去括號,再移項、合并同類項,把x的系數(shù)化為1,并在數(shù)軸上表示出來即可;(2)分別求出各不等式的解集,再求出其公共解集即可.
【考點精析】本題主要考查了不等式的解集在數(shù)軸上的表示和一元一次不等式的解法的相關(guān)知識點,需要掌握不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數(shù)化為1(特別要注意不等號方向改變的問題)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校準(zhǔn)備組織520名學(xué)生進(jìn)行野外考察活動,行李共有240件.學(xué)校計劃租用甲、乙兩種型號的汽車共12輛,經(jīng)了解,甲種汽車每輛最多能載50人和15件行李,乙種汽車每輛最多能載40人和25件行李.設(shè)租用甲種汽車輛,你認(rèn)為下列符合題意的不等式組是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC中,AB=AC,P為其底角平分線的交點,將△BCP沿CP折疊,使B點恰好落在AC邊上的點D處,若DA=DP,則∠A的度數(shù)為(

A.20°
B.30°
C.32°
D.36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:已知在△ABC中,邊AB上的動點DAB運動(與A,B不重合),同時點E由點C沿BC的延長線方向運動(E不與C重合),連接DEAC于點F,點H是線段AF上一點,求的值.

(1)初步嘗試

如圖(1),若ABC是等邊三角形,DHAC,且點DE的運動速度相等,小王同學(xué)發(fā)現(xiàn)可以過點DDGBCAC于點G,先證GHAH,再證GFCF

從而求得的值為

(2)類比探究

如圖(2),若ABC中,∠ABC=90°,ADHBAC=30°,且點D,E的運動速度之比是︰1,求的值.

(3)延伸拓展

如圖(3)若在ABC中,ABAC,ADHBAC=36°,記m且點D、E的運動速度相等,試用含m的代數(shù)式表示的值(直接寫出果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用若干個大小相同,棱長為1的小正方體搭成一個幾何體模型,其三視圖如圖所示,則搭成這個幾何體模型所用的小正方體的個數(shù)是( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明袋子中裝有2個紅球,1個黃球,它們除顏色外其余都相同.小麗和小亮做摸球游戲,約定游戲規(guī)則是:小麗先從袋中任意摸出1個球記下顏色后不放回,小亮再從袋中摸出1個球記下顏色,如果兩人摸到的球的顏色相同則小麗贏,否則小亮贏.

(1)請用樹狀圖或列表格法表示一次游戲中所有可能出現(xiàn)的結(jié)果;

(2)這個游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(a1x22x+10有兩個不相等的實數(shù)根,則a的取值范圍是( 。

A. a2a≠0B. a2C. a2a≠1D. a<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式(組):
(1)
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=mx+25﹣m是正比例函數(shù),則該函數(shù)的表達(dá)式為________

查看答案和解析>>

同步練習(xí)冊答案