精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線y=4-x與兩坐標軸分別相交于AB點,點M是線段AB上任意一點(A、B兩點除外),過M分別作MCOA于點CMDOB于點D。

(1)當點MAB上運動時,四邊形OCMD的周長為________;

(2)當四邊形OCMD為正方形時,將正方形OCMD沿著x軸的正方向移動,設平移的距離為a (0<a≤4),在平移過程中:

①當平移距離a=1時, 正方形OCMDAOB重疊部分的面積為________;

②當平移距離a是多少時,正方形OCMD的面積被直線AB分成l:3兩個部分?

【答案】(1)8;(2)①3.5;②a=

【解析】試題分析:(1)設點M的橫坐標為x,則點M的縱坐標為-x+40x4,x0,-x+40)根據四邊形的周長計算方法計算即可發(fā)現(xiàn),當點MAB上運動時,四邊形OCMD的周長不發(fā)生變化,總是等于8

20a≤2時,S=4-a2=-a2+4,并且a=1可求出重疊部分的面積;

當四邊形為OCMD為正方形時,先求得正方形的邊長,從而可求得正方形的面積,可求得正方形被直線分成的較小的部分的面積為1,然后再證明較小的部分為等腰直角三角形,從而可求得該等腰直角三角形的直角邊的長度,于是可求得平移的距離.

試題解析:(1)(1)設OC=x,則CM=4-x

MCOA,MDOB,ODOC,

四邊形OCMD為矩形,

四邊形OCMD的周長=OD+OC+CM+DM=2CO+CM=2x+4-x=2×4=8

2如圖( 2 ),當0a≤2時,S=SO′CMD-SMEF=4-a2=-a2+4,

②∵當四邊形為OCMD為正方形時,OC=CM,即x=4-x,解得:x=2

S正方形OCMD的面=4

正方形OCMD的面積被直線AB分成13兩個部分,

兩部分的面積分別為13

0a≤2時,如圖1所示:

直線AB的解析式為y=4-x,

∴∠BAO=45°

∴△MM′E為等腰直角三角形.

MM′=M′E

MM′2=1

MM′=,即a=

2a4時,如圖2所示:

∵∠BAO=45°,

∴△EO′A為等腰直角三角形.

EO′=O′A

O′A2=1,解得:O′A=

y=0代入y=4-x得;4-x=0,解得:x=4,

OA=4

OO′=4-,即a=4-

綜上所述,當平移的距離為a=a=4時,正方形OCMD的面積被直線AB分成13兩個部分.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,對角線AC,BD交于點O,點P在線段BC上(不含點B),∠BPE= ∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.

(1)當點P與點C重合時(如圖①),求證:△BOG≌△POE;
(2)結合圖②,通過觀察、測量、猜想: 的關系,并證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若AC=8,BD=6,直接寫出 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校九年級6個班舉行畢業(yè)文藝匯演,每班3個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)歌唱類節(jié)目數比舞蹈類節(jié)目數的2倍少6個.設舞蹈類節(jié)目有個.

(1)用含的代數式表示:歌唱類節(jié)目有______________個;

(2)求九年級表演的歌唱類與舞蹈類節(jié)目數各有多少個?

(3)該校七、八年級有小品節(jié)目參與匯演,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計全場節(jié)目交接所用的時間總共16分鐘.若從19:00開始,21:30之前演出結束,問參與的小品類節(jié)目最多能有多少個?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一個正方形紙片OABC放置在平面直角坐標系中,其中A(1,0),C(0,1),P為AB邊上一個動點,折疊該紙片,使O點與P點重合,折痕l與OP交于點M,與 對角線AC交于Q點

(Ⅰ)若點P的坐標為(1, ),求點M的坐標;
(Ⅱ)若點P的坐標為(1,t)
①求點M的坐標(用含t的式子表示)(直接寫出答案)
②求點Q的坐標(用含t的式子表示)(直接寫出答案)
(Ⅲ)當點P在邊AB上移動時,∠QOP的度數是否發(fā)生變化?如果你認為不發(fā)生變化,寫出它的角度的大。⒄f明理由;如果你認為發(fā)生變化,也說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,正△AOB的邊長為2,設直線x=t(0≤t≤2)截這個三角形所得位于此直線左方的圖形的面積為y,則y關于t的函數圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABEF,則∠A、∠C、∠D、∠E滿足的數量關系是( )

A. A+∠C+∠D+∠E360°B. A-∠C+∠D+∠E180°

C. E-∠C+∠D-∠A90°D. A+∠D=∠C+∠E

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了落實漳州市教育局關于全市中小學生每天閱讀1小時的文件精神.某校對七年級(3)班全體學生一周到圖書館的次數做了調查統(tǒng)計,以下是調查過程中繪制的還不完整的兩個統(tǒng)計圖.請你根據統(tǒng)計圖表中的信息,解答下列問題:
七年級(3)班學生到圖書館的次數統(tǒng)計表

到圖書館的
次數

0次

1次

2次

3次

4次及
以上

人數

5

10

m

8

12


(1)求圖表中m,n的值;
(2)該年級學生共有300人,估計這周到圖書館的次數為“4次及以上”的學生大約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB=AC=AD,CAD=60°,分別連接BC、BD,作AE平分∠BACBD于點E,若BE=4,ED=8,則DF=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AC∥BD,要使△ABC≌△BAD需再補充一個條件,下列條件中,不能選擇的是( )

A. BCAD B. AC=BD C. BC=AD D. C=D

查看答案和解析>>

同步練習冊答案