【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
【答案】(1) y=﹣x2﹣2x+3;(2) P的坐標為(﹣4,﹣)和(﹣6,﹣);(3) (1,﹣4).
【解析】
試題分析:(1)根據二次函數的交點式確定點A、B的坐標,求出直線的解析式,求出點D的坐標,求出拋物線的解析式;(2)作PH⊥x軸于H,設點P的坐標為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據相似三角形的性質計算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據正切的定義求出Q的運動時間t=BE+EF時,t最小即可.
試題解析:(1)∵y=a(x+3)(x﹣1),
∴點A的坐標為(﹣3,0)、點B兩的坐標為(1,0),
∵直線y=﹣x+b經過點A,
∴b=﹣3,
∴y=﹣x﹣3,
當x=2時,y=﹣5,
則點D的坐標為(2,﹣5),
∵點D在拋物線上,
∴a(2+3)(2﹣1)=﹣5,
解得,a=﹣,
則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
(2)作PH⊥x軸于H,
設點P的坐標為(m,n),
當△BPA∽△ABC時,∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即=,
∴=,即n=﹣a(m﹣1),
∴,
解得,m1=﹣4,m2=1(不合題意,舍去),
當m=﹣4時,n=5a,
∵△BPA∽△ABC,
∴=,即AB2=ACPB,
∴42=,
解得,a1=(不合題意,舍去),a2=﹣,
則n=5a=﹣,
∴點P的坐標為(﹣4,﹣);
當△PBA∽△ABC時,∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即=,
∴=,即n=﹣3a(m﹣1),
∴,
解得,m1=﹣6,m2=1(不合題意,舍去),
當m=﹣6時,n=21a,
∵△PBA∽△ABC,
∴=,即AB2=BCPB,
∴42=,
解得,a1=(不合題意,舍去),a2=﹣,
則點P的坐標為(﹣6,﹣),
綜上所述,符合條件的點P的坐標為(﹣4,﹣)和(﹣6,﹣);
(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,
則tan∠DAN===
∴∠DAN=60°,
∴∠EDF=60°,
∴DE==EF,
∴Q的運動時間t=+=BE+EF,
∴當BE和EF共線時,t最小,
則BE⊥DM,E(1,﹣4).
科目:初中數學 來源: 題型:
【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間x(天)的關系如圖中線段l2所示(不考慮其它因素).
(1)求原有蓄水量y1(萬m3)與時間x(天)的函數關系式,并求當x=20時的水庫總蓄水量.
(2)求當0≤x≤60時,水庫的總蓄水量y(萬m3)與時間x(天)的函數關系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴重干旱,直接寫出發(fā)生嚴重干旱時x的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2017年國慶節(jié)期間,南寧動物園在7天假期中每天接待游客的人數與前一天相比的變化情況(正數表示比前一天多的人數,負數表示比前一天少的人數)如下表:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數變化/萬人 | +1.7 | +0.6 | +0.3 | -0.3 | -0.6 | +0.2 | -1.1 |
(1) 請判斷七天內游客人數最多的是哪天?最少的是哪天?它們相差多少萬人?
(2) 若9月30日的游客人數為3萬人,求這7天的游客總人數是多少萬人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016山東濰坊第23題)旅游公司在景區(qū)內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數.發(fā)現每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)
(2)當每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com