【題目】(12分)如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點D.點P從點D出發(fā),沿線段DC向點C運動,點Q從點C出發(fā),沿線段CA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當點P運動到C時,兩點都停止.設運動時間為t秒.
(1)求線段CD的長;
(2)設△CPQ的面積為S,求S與t之間的函數(shù)關系式,并確定在運動過程中是否存在某一時刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,說明理由;
(3)當t為何值時,△CPQ為等腰三角形?
【答案】(1)4.8;(2)t=或t=3;(3)t=2.4秒或秒或秒.
【解析】試題分析:(1)利用勾股定理可求出AB長,再用等積法就可求出線段CD的長.
(2)過點P作PH⊥AC,垂足為H,通過三角形相似即可用t的代數(shù)式表示PH,從而可以求出S與t之間的函數(shù)關系式;利用=9:100建立t的方程,解方程即可解決問題.
(3)可分三種情況進行討論:由CQ=CP可建立關于t的方程,從而求出t;由PQ=PC或QC=QP不能直接得到關于t的方程,可借助于等腰三角形的三線合一及三角形相似,即可建立關于t的方程,從而求出t.
試題解析:(1)如圖1,∵∠ACB=90°,AC=8,BC=6,
∴AB=10.
∵CD⊥AB,
∴S△ABC=BC·AC=AB·CD.
∴CD===4.8.
∴線段CD的長為4.8;
(2)①過點P作PH⊥AC,垂足為H,如圖2所示.
由題可知DP=t,CQ=t.
則CP=4.8﹣t.
∵∠ACB=∠CDB=90°,
∴∠HCP=90°﹣∠DCB=∠B.
∵PH⊥AC,
∴∠CHP=90°.
∴∠CHP=∠ACB.
∴△CHP∽△BCA.
∴.
∴.
∴PH= .
∴=CQ·PH=t·()= ;
②存在某一時刻t,使得=9:100.
∵=×6×8=24,且=9:100,
∴():24=9:100.
整理得:5t2﹣24t+27=0.
即(5t﹣9)(t﹣3)=0.
解得:t=或t=3.
∵0≤t≤4.8,
∴當t=秒或t=3秒時, =9:100;
(3)存在
①若CQ=CP,如圖1,
則t=4.8﹣t.
解得:t=2.4.
②若PQ=PC,如圖2所示.
∵PQ=PC,PH⊥QC,
∴QH=CH=QC=.
∵△CHP∽△BCA.
∴.
∴.
解得;t=.
③若QC=QP,
過點Q作QE⊥CP,垂足為E,如圖3所示.
同理可得:t=.
綜上所述:當t為2.4秒或秒或秒時,△CPQ為等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED=
②猜想圖①中∠AED,∠EAB,∠EDC的關系,并用兩種不同的方法證明你的結論.
(2)拓展應用:
如圖②,射線FE與l1 , l2交于分別交于點E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關系(任寫出兩種,可直接寫答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( )
A. 若兩個多邊形相似,則對應邊的比相等
B. 若兩個多邊形相似,則對應角的比等于對應邊的比
C. 若兩個多邊形的對應角相等,則這兩個多邊形相似
D. 若兩個多邊形的對應邊的比相等,則這兩個多邊形相似
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,直線AB、CD、EF都經(jīng)過點O,且AB⊥CD,OG平分∠BOE,如果∠EOG= ∠AOE,求∠EOG和∠DOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD , E 是CB 延長線上一點,下列推理正確的是( )
A.如果∠1=∠2 ,那么AB∥CD
B.如果∠3=∠4 ,那么 AD∥BC
C.如果AD∥BC , 那么∠6+∠BAD=180°.
D.如果∠6+∠BCD=180°,那么AD∥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連結AD,將△ACD沿AD折疊,點C落在點C′,連結C′D交AB于點E,連結BC′.當△BC′D是直角三角形時,DE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com