精英家教網 > 初中數學 > 題目詳情

【題目】如圖,ABC是等邊三角形,AB=,點D是邊BC上一點,點H是線段AD上一點,連接BH、CH.當∠BHD=60°,AHC=90°時,DH=_____

【答案】

【解析】如圖,作AEBHE,BFAHF,利用等邊三角形的性質得AB=AC,BAC=60°,再證明∠ABH=CAH,則可根據“AAS”證明ABE≌△CAH,所以BE=AH,AE=CH,在RtAHE中利用含30度的直角三角形三邊的關系得到HE=AH,AE=AH,則CH=AH,于是在RtAHC中利用勾股定理可計算出AH=2,從而得到BE=2,HE=1,AE=CH=,BH=1,接下來在RtBFH中計算出HF=,BF=,然后證明CHD∽△BFD,利用相似比得到=2,從而利用比例性質可得到DH的長.

AEBHE,BFAHF,如圖,

∵△ABC是等邊三角形,

AB=AC,BAC=60°,

∵∠BHD=ABH+BAH=60°,BAH+CAH=60°,

∴∠ABH=CAH,

ABECAH,

∴△ABE≌△CAH,

BE=AH,AE=CH,

RtAHE中,∠AHE=BHD=60°,

sinAHE=,HE=AH,

AE=AHsin60°=AH,

CH=AH,

RtAHC中,AH2+(AH)2=AC2=(2,解得AH=2,

BE=2,HE=1,AE=CH=

BH=BE﹣HE=2﹣1=1,

RtBFH中,HF=BH=,BF=,

BFCH,

∴△CHD∽△BFD,

=2,

DH=HF=×=,

故答案為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知點P為某個封閉圖形邊界上的一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設點M的運動時間為x,線段PM的長度為y,表示yx的函數圖象大致如圖所示,則該封閉圖形可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與直線y=x+3交于A,B兩點,交x軸于C、D兩點,連接AC、BC,已知A(0,3),C(﹣3,0).

(1)求拋物線的解析式;

(2)在拋物線對稱軸l上找一點M,使|MB﹣MD|的值最大,并求出這個最大值;

(3)點Py軸右側拋物線上一動點,連接PA,過點PPQPAy軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與ABC相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABCADBC,AE平分∠BAC,∠B70°,∠C30°.求

1)∠BAE的度數.

2)∠DAE的度數.

3)探究:有的同學認為無論∠B、∠C的度數是多少,都有∠DAE=(∠B-∠C)成立,你同意嗎?并說出成立或不成立的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BEO的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.

(1)若∠ADE=25°,求∠C的度數;

(2)若AB=AC,CE=2,求⊙O半徑的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=x2+(a﹣2)x+3的圖象與一次函數y=x(1≤x≤2)的圖象有且僅有一個交點,則實數a的取值范圍是( 。

A. a=3±2 B. ﹣1≤a<2

C. a=3或﹣≤a<2 D. a=3﹣2或﹣1≤a<﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒4°的速度旋轉,同時射線OB繞點O沿逆時針方向以每秒6°的速度旋轉,直線MN保持不動,如圖2,設旋轉時間為t(0t60,單位:秒)

1)當t=3時,求∠AOB的度數;

2)在運動過程中,當∠AOB第二次達到72°時,求t的值;

3)在旋轉過程中是否存在這樣的t,使得射線OB與射線OA垂直?如果存在,請求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y=(k0)在第一象限的圖象經過A、C兩點,點CAB的中點,若△OAB的面積為6,則k的值為_____

查看答案和解析>>

同步練習冊答案