【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°,得到△FEC
(1)猜想AE與BF有何關(guān)系,說明理由.
(2)若△ABC的面積為3cm2,求四邊形ABFE的面積.
(3)當(dāng)∠ACB為多少度時,四邊形ABFE為矩形?
【答案】(1)AE∥BF,AE=BF(平行四邊形的對邊平行且相等);
(2)S四邊形ABFE=12cm2;
(3)當(dāng)∠ACB=60°時,四邊形ABFE為矩形.
【解析】
試題分析:(1)由△ABC繞點C順時針旋轉(zhuǎn)180°可知:AC=CF,BC=CE,四邊形ABFE為平行四邊形,于是得到結(jié)論;
(2)由于AC是△ABE的BE邊上中線,于是得到S△ABE=2S△ABC=6,同理S△BEF=2S△CEF=6,即可得到結(jié)論;
(3)要判斷四邊形ABFE為矩形,從對角線來看,要求AF=BE,又AF與BE互相平分,只需要AC=BC,而AB=AC,故△ABC為等邊三角形,∠ACB=60°.
試題解析:(1)AE∥BF,AE=BF.
理由是:∵△ABC繞點C順時針旋轉(zhuǎn)180°得到△FEC,
∴△ABC≌△FEC,
∴AB=FE(全等三角形的對應(yīng)邊相等),
∠ABC=∠FEC(全等三角形的對應(yīng)角相等),
∴AB∥FE(內(nèi)錯角相等,兩直線平行),
∴四邊形ABFE為平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),
∴AE∥BF,AE=BF(平行四邊形的對邊平行且相等);
(2)由(1)得四邊形ABFE為平行四邊形,
∴AC=CF,BC=CE,
∴根據(jù)等底同高得到S△ABC=S△ACE=S△BCF=S△CEF=3,
S四邊形ABFE=4S△ABC=12cm2;
(3)當(dāng)∠ACB=60°時,四邊形ABFE為矩形.
理由是:AB=AC,∠ACB=60°,
∴△ABC是等邊三角形,
∴BC=AC,∠BAC=60°,
∴∠ACE=120°.
又BC=CE,AC=CF,
∴∠EAC=∠CEA=30°,
∴∠BAE=90°,同理可證其余三個角也為直角.
∴四邊形ABFE為矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組的解滿足x<0,y>0.
(1)x=________, y=________(用含a的代數(shù)式表示);
(2)求a的取值范圍;
(3)若2x8y=2m,用含有a的代數(shù)式表示m,并求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果多邊形的每個內(nèi)角都比它相鄰的外角的4倍多30°,求這個多邊形的內(nèi)角和及對角線的總條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題.
例題:若, 求m和n的值
解:∵
∴
∴
∴,
∴,
問題:(1)若,求的值.
(2)已知a,b,c是△ABC的三邊長,滿足,且c是△ABC中最長的邊,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角三角形ABC內(nèi)接于⊙O,AD⊥BC,垂足為D.
(1)如圖1, ,BD=DC,求∠B的度數(shù);
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點F,過點B作BG∥AD交⊙O于點G,在AB邊上取一點H,使得AH=BG.求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=2,則△A5B5A6的邊長為( )
A. 8 B. 16 C. 24 D. 32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是交警在一個路口統(tǒng)計的某個時段來往車輛的車速(單位:km/h).
(1)計算這些車的平均速度.
(2)車速的眾數(shù)是多少?
(3)車速的中位數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程 有兩個不相等的實數(shù)根.
(1)求k的取值范圍。
(2)是否存在實數(shù)k,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級學(xué)生的體能情況,隨機(jī)抽取部分男生進(jìn)行引體向上測試,并根據(jù)抽測成績繪制成如下兩幅統(tǒng)計圖.
()本次抽測的學(xué)生總?cè)藬?shù)為__________;請你補全圖的統(tǒng)計圖.
()本次抽測成績的眾數(shù)為__________次;中位數(shù)為__________次.
()若規(guī)定引體向上次以上(含次)為體能達(dá)到優(yōu)秀,則該校名九年級男生中,估計有多少人能達(dá)到優(yōu)秀?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com