【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
【答案】(1)證明:在△ACD與△ABE中,
∵∠A=∠A,∠ADC=∠AEB=90°,AB=AC,
∴△ACD≌△ABE,
∴AD=AE.
(2)互相垂直,
在Rt△ADO與△AEO中,
∵OA=OA,AD=AE,
∴△ADO≌△AEO,
∴∠DAO=∠EAO,
即OA是∠BAC的平分線,
又∵AB=AC,
∴OA⊥BC.
【解析】
試題(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;
(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.
試題解析:(1)證明:∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°,
△ACD和△ABE中,
∵
∴△ACD≌△ABE(AAS),
∴AD=AE.
(2)猜想:OA⊥BC.
證明:連接OA、BC,
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°.
在Rt△ADO和Rt△AEO中,
∵
∴Rt△ADO≌Rt△AEO(HL).
∴∠DAO=∠EAO,
又∵AB=AC,
∴OA⊥BC.
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,直線相交于點.
(1)若,求的度數(shù);
(2)若,求的度數(shù);
(3)在(2)的條件下,過點作,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是( )
A.2
B.2+
C.2
D.2+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在直角三角形ABC中,∠ACB=90°,D是AB上一點,且∠ACD=∠B.
(1)如圖1,求證:CD⊥AB;
(2)將△ADC沿CD所在直線翻折,A點落在BD邊所在直線上,記為A′點.
①如圖2,若∠B=34°,求∠A′CB的度數(shù);
②若∠B=n°,請直接寫出∠A′CB的度數(shù)(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,D是半圓上的一點,∠DOB=75°,DC交BA的延長線于E,交半圓于C,且CE=AO,求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F
(1)點D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點D在AB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請寫出正確結(jié)論并證明。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段MN=8,C是線段MN上一動點,在MN的同側(cè)分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點H,求證ME=DN,并求∠DHM的度數(shù);
(2)如圖②,過點D、E分別作線段MN的垂線,垂足分別為F、G,問:在點C運動過程中,DF+EG的長度是否為定值,如果是,請求出這個定值,如果不是請說明理由;
(3)當點C由點M移到點N時,點H移到的路徑長度為(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點M、N同時從原點出發(fā)沿數(shù)軸做勻速運動,己知動點M、N的運動速度比是1:2(速度單位:1個單位長度/秒),設(shè)運動時間為t秒.
(1)若動點M向數(shù)軸負方向運動,動點N向數(shù)軸正方向運動,當t=2秒時,動點M運動到A點,動點N運動到B點,且AB=12(單位長度).
①在直線l上畫出A、B兩點的位置,并回答:點A運動的速度是 (單位長度/秒);點B運動的速度是 (單位長度/秒).
②若點P為數(shù)軸上一點,且PA﹣PB=OP,求的值;
(2)由(1)中A、B兩點的位置開始,若M、N同時再次開始按原速運動,且在數(shù)軸上的運動方向不限,再經(jīng)過幾秒,MN=4(單位長度)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,點P從A點出發(fā)沿路徑向終點運動,終點為B點;點Q從B點出發(fā)沿路徑向終點運動,終點為A點點P和Q分別以1和3的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過P和Q作于E,于問:點P運動多少時間時,與QFC全等?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com