【題目】如圖,AB⊥BD,CD⊥BD,∠A與∠AEF互補(bǔ),以下是證明CD//EF的推理過程及理由,請(qǐng)你在橫線上補(bǔ)充適當(dāng)條件,完整其推理過程或理由。
證明:∵AB⊥BD,CD⊥BD(已知)
∴∠ABD=∠CDB=_______________.(____________________)
∴∠ABD+∠CDB=180°
∴AB∥____________(____________________)
又∠A與∠AEF互補(bǔ)(____________________)
∴∠A+∠AEF=___________(____________________)
∴AB//___________(____________________)
∴CD//EF(____________________)
【答案】90 垂直的定義 CD 同旁內(nèi)角互補(bǔ),兩直線平行 已知 180 互補(bǔ)的定義 EF 同旁內(nèi)角互補(bǔ),兩直線平行 平行于同一條直線的兩直線平行
【解析】
根據(jù)垂直定義及平行線的判定和性質(zhì)依次分析即可得到結(jié)果.
∵AB⊥BD,CD⊥BD(已知)
∴∠ABD=∠CDB= 90.( 垂直的定義 )
∴∠ABD+∠CDB=180°
∴AB∥ CD ( 同旁內(nèi)角互補(bǔ),兩直線平行 )
又∠A與∠AEF互補(bǔ)( 已知 )
∴∠A+∠AEF= 180 ( 互補(bǔ)的定義 )
∴AB// EF ( 同旁內(nèi)角互補(bǔ),兩直線平行 )
∴CD//EF( 平行于同一條直線的兩直線平行 )
故答案為:90;垂直的定義;CD;同旁內(nèi)角互補(bǔ),兩直線平行;已知;180;互補(bǔ)的定義;EF;同旁內(nèi)角互補(bǔ),兩直線平行;平行于同一條直線的兩直線平行
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.
(1)求拋物線的解析式;
(2)點(diǎn)D在y軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°,得到平行四邊形AB′C′D′(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn),點(diǎn)D′與點(diǎn)D是對(duì)應(yīng)點(diǎn)),點(diǎn)B′恰好落在BC邊上,則∠C的度數(shù)等于( )
A. 100° B. 105° C. 115° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線交⊙O于點(diǎn)C,過點(diǎn)C作AE的垂線,垂足為D,直線DC與AB的延長(zhǎng)線交于點(diǎn)P.
(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)若tan∠P=,AD=6,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對(duì)于一個(gè)有理數(shù)x,我們把[x]稱作x的對(duì)稱數(shù).
若,則[x]=x-2:若x<0,則[x]=x+2.例:[1]=1-2=-1,[-2]=-2+2=0
(1)求[][-1]的值;
(2)已知有理數(shù)a>0.b<0,且滿足[a]=[b],試求代數(shù)式的值:
(3)解方程:[2x]+[x+1]=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情景:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
(1)數(shù)學(xué)活動(dòng)小組經(jīng)過討論形成下列推理,請(qǐng)你補(bǔ)全推理依據(jù).
如圖2,過點(diǎn)P作PE∥AB,
∵PE∥AB(作圖知)
又∵AB∥CD,
∴PE∥CD.( )
∴∠A+∠APE=180°.
∠C+∠CPE=180°.( )
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
問題遷移:
(2)如圖3,AD∥BC,當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=α,∠BCP=β,求∠CPD與α、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由.
問題解決:
(3)在(2)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD與α、β之間的數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點(diǎn),, PD⊥CD,CD交⊙O于A,若AC=AD,PD = ,sin∠PAD = ,則△PAB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等腰直角三角形,∠ACB=90°,AB=,將AC邊所在直線向右平移,所得直線MN與BC邊的延長(zhǎng)線相交于點(diǎn)M,點(diǎn)D在AC邊上,CD=CM,過點(diǎn)D的直線平分∠BDC,與BC交于點(diǎn)E,與直線MN交于點(diǎn)N,聯(lián)接AM.
(1)若CM=,則AM= ;
(2)如圖①,若點(diǎn)E是BM的中點(diǎn),求證:MN=AM;
(3)如圖②,若點(diǎn)N落在BA的延長(zhǎng)線上,求AM的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com