【題目】把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12,DC=14,把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙),此時AB與 CD1交于點O,則線段AD1的長為(

A.6
B.10
C.8
D.

【答案】B
【解析】解:∵∠ACB=∠DEC=90°,∠D=30°,
∴∠DCE=90°﹣30°=60°,
∴∠ACD=90°﹣60°=30°,
∵旋轉(zhuǎn)角為15°,
∴∠ACD1=30°+15°=45°,
又∵∠A=45°,
∴△ACO是等腰直角三角形,
∴AO=CO= AB= ×12=6,AB⊥CO,
∵DC=14,
∴D1C=DC=14,
∴D1O=14﹣6=8,
在Rt△AOD1中,AD1= = =10.
故選:B.
先求出∠ACD=30°,再根據(jù)旋轉(zhuǎn)角求出∠ACD1=45°,然后判斷出△ACO是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式計算即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD相交于O點,OE⊥AB∠1=55°,則∠BOD=  度;若OF平分∠DOB,則∠EOF的度數(shù)是  度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中,有一道群羊逐草的問題,大意是:牧童甲在草原上放羊,乙牽著一只羊來,并問甲:你的羊群有100只嗎?甲答:如果在這群羊里加上同樣的一群,再加上半群,四分之一群,再加上你的一只,就是100只.問牧童甲趕著多少只羊?若設(shè)這群羊有x只,則下列方程中,正確的是( 。

A. (1++)x=100+1 B. x+x+x+x=100﹣1 C. (1++)x=100﹣1 D. x+x+x+x=100+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲倉庫有水泥100噸,乙倉庫有水泥80噸,要全部運動AB兩工地,已知A工地需要70噸,B工地需要110噸,甲倉庫運到A、B兩工地的運費分別是140/噸、150/噸,乙倉庫運到A、B兩工地的運費分別是200/噸、80/噸,本次運送水泥總運費需要25900元,問甲倉庫運到A工地水泥的噸數(shù).(運費:元/噸,表示運送每噸水泥所需的人民幣)

1)設(shè)甲倉庫運到A工地水泥的噸數(shù)為x噸,請在下面表格中用x表示出其他未知量.

甲倉庫

乙倉庫

A工地

x

   

B工地

 

x+10

2)用含x的代數(shù)式表示運送甲倉庫100噸水泥的運費為   元.(寫出化簡后的結(jié)果)

3)請根據(jù)題目中的等量關(guān)系和以上的分析列出方程.(只列出方程即可,寫成ax+b=0的形式,不用解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意設(shè)未知數(shù),并列出方程(不必求解).

(1)有兩個工程隊,甲隊人數(shù)30名,乙隊人數(shù)10名,問怎樣調(diào)整兩隊的人數(shù),才能使甲隊的人數(shù)是乙隊人數(shù)的7倍.

(2)有一個班的同學(xué)準(zhǔn)備去劃船,租了若干條船,他們計算了一下,如果比原計劃多租1條船,那么正好每條船坐6人;如果比原計劃少租1條船,那么正好每條船坐9人.問這個班共有多少名同學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:扇形DOE的圓心角為直角,它的半徑為2cm,正方形OABC內(nèi)接于扇形,點A、B、C分別在OE、 、OD上,過E作EF⊥OE交CB的延長線于F,則圖中陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)(+4)×(-5);         (2)(-0.125)×(-8);

(3)(-2 )×(-);       (4)0×(-13.52);

(5)(-3.25)×(+);       (6)(-1)×a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:直線AB經(jīng)過點A(0,3)點B( ,0),點M在y軸上,⊙M經(jīng)過點A、B,交x軸于另一點C.

(1)求直線AB的解析式;
(2)求點M的坐標(biāo);
(3)點P是劣弧AC上一個動點,當(dāng)P點運動時,問:線段PA,PB,PC有什么數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

同步練習(xí)冊答案