【題目】如圖,ADEC

1)若∠C40°AB平分∠DAC,求∠DAB的度數(shù).

2)若AE平分∠DABBF平分∠ABC,試說明AEBF的理由.

【答案】170°;(2)證明見解析

【解析】

(1)已知ADEC,根據(jù)兩直線平行,同旁內(nèi)角互補可得∠C+DAC180°,即可求得∠DAC140°,再根據(jù)角平分線的定義即可求得∠DABDAC70°;(2)已知ADEC,根據(jù)兩直線平行,內(nèi)錯角相等可得∠DAB=∠ABC;已知AE平分∠DAB,BF平分∠ABC,根據(jù)角平分線的定義可得EABDAB,ABFABC,所以∠EAB=∠ABF,根據(jù)內(nèi)錯角相等,兩直線平行即可判定AEBF

1)∵ADEC,

∴∠C+DAC180°

∵∠C40°,

∴∠DAC140°,

AB平分∠DAC

∴∠DABDAC70°;

2)理由是:∵ADEC

∴∠DAB=∠ABC,

AE平分∠DAB,BF平分∠ABC,

∴∠EABDAB,ABFABC

∴∠EAB=∠ABF,

AEBF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè),

①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26 為①式,然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 為②式;②﹣ ①得2SS=271,S=271,即1+2+22+23+24+25+26=271

1)求1+3+32+33+34+35+36的值;

2)求1+a+a2+a3+…+a2016a≠0a≠1)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個四位自然數(shù)的百位數(shù)字大于或等于十位數(shù)字,且千位數(shù)字等于百位數(shù)字與十位數(shù)字的和,個位數(shù)字等于百位與十位數(shù)字的差,則我們稱這個四位數(shù)為親密數(shù),例如:自然數(shù)4312,其中3>1,4=3+1,2=3-1,所以4312是親密數(shù);
(1)最小的親密數(shù)是 ,最大的親密數(shù)是 ;
(2)若把一個親密數(shù)的千位數(shù)字與個位數(shù)字交換,得到的新數(shù)叫做這個親密數(shù)的友誼數(shù),請證明任意一個親密數(shù)和它的友誼數(shù)的差都能被原親密數(shù)的十位數(shù)字整除;
(3)若一個親密數(shù)的后三位數(shù)字所表示的數(shù)與千位數(shù)字所表示的數(shù)的7倍之差能被13整除,請求出這個親密數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】荊州古城是聞名遐邇的歷史文化名城,五一期間相關(guān)部門對到荊州觀光游客的出行方式進行了隨機抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,下列結(jié)論錯誤的是( 。

A. 本次抽樣調(diào)查的樣本容量是5000

B. 扇形圖中的m10%

C. 樣本中選擇公共交通出行的有2500

D. 五一期間到荊州觀光的游客有50萬人,則選擇自駕方式出行的有25萬人

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩種不同的數(shù)對處理器、.當數(shù)對輸入處理器時,輸出數(shù)對,記作,;但數(shù)對輸入處理器時,輸出數(shù)對,記作,

1,  ,  ),,    ).

2)當,,時,求;

3)對于數(shù)對,一定成立嗎?若成立,說明理由;若不成立,舉例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大小.

閱讀下面的解答過程,并填空(理由或數(shù)學式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質(zhì))

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 CE 平分∠ACDAE 平分∠BAC∠EAC+∠ACE90°

1)請判斷 AB CD 的位置關(guān)系,并說明理由;

2)如圖,在(1)的結(jié)論下,當∠E90°保持不變時,移動直角頂點 E,使∠MCE∠ECD, 當直角頂點 E 點移動時,請確定∠BAE ∠MCD 的數(shù)量關(guān)系,并說明理由;

3)如圖,在(1)的結(jié)論下,P 為線段 AC 上的一個定點,點 Q 為直線 CD 上的一個動點,當點 Q 在射線 CD 上運動時(點 C 除外)∠BAC ∠CPQ+∠CQP 有何數(shù)量關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)前夕,我市某校學生積極參與關(guān)愛貧困母親的活動,他們購進一批單價為20元的孝文化衫在課余時間進行義賣,要求每件銷售價格不得高于27元,并將所得利潤捐給貧困母親。經(jīng)試驗發(fā)現(xiàn),若每件按22元的價格銷售時,每天能賣出42件;若每件按25元的價格銷售時,每天能賣出33件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).

1)求yx滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案