【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點(diǎn)A(m﹣2,0)和B(2m+3,0)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)BC.

(1)求m、n的值;
(2)如圖2,點(diǎn)N為拋物線上的一動(dòng)點(diǎn),且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點(diǎn)M、P分別為線段BC和線段OB上的動(dòng)點(diǎn),連接PM、PC,是否存在這樣的點(diǎn)P,使△PCM為等腰三角形,△PMB為直角三角形同時(shí)成立?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵拋物線的解析式為y=﹣ [(x﹣2)2+n]=﹣ (x﹣2)2 n,

∴拋物線的對(duì)稱軸為直線x=2,

∵點(diǎn)A和點(diǎn)B為對(duì)稱點(diǎn),

∴2﹣(m﹣2)=2m+3﹣2,解得m=1,

∴A(﹣1,0),B(5,0),

把A(﹣1,0)代入y=﹣ [(x﹣2)2+n]得9+n=0,解得n=﹣9


(2)

解:作ND∥y軸交BC于D,如圖2,

拋物線解析式為y=﹣ [(x﹣2)2﹣9]=﹣ x2+ x+3,

當(dāng)x=0時(shí),y=3,則C(0,3),

設(shè)直線BC的解析式為y=kx+b,

把B(5,0),C(0,3)代入得 ,解得 ,

∴直線BC的解析式為y=﹣ x+3,

設(shè)N(x,﹣ x2+ x+3),則D(x,﹣ x+3),

∴ND=﹣ x2+ x+3﹣(﹣ x+3)=﹣ x2+3x,

∴SNBC=SNDC+SNDB= 5ND=﹣ x2+ x=﹣(x﹣ 2+ ,

當(dāng)x= 時(shí),△NBC面積最大,最大值為


(3)

<>解:存在.

∵B(5,0),C(0,3),

∴BC= = ,

當(dāng)∠PMB=90°,則∠PMC=90°,△PMC為等腰直角三角形,MP=MC,

設(shè)PM=t,則CM=t,MB= ﹣t,

∵∠MBP=∠OBC,

∴△BMP∽△BOC,

= = ,即 = = ,解得t= ,BP= ,

∴OP=OB﹣BP=5﹣ =

此時(shí)P點(diǎn)坐標(biāo)為( ,0);

當(dāng)∠MPB=90°,則MP=MC,

設(shè)PM=t,則CM=t,MB= ﹣t,

∵∠MBP=∠CBO,

∴△BMP∽△BCO,

= = ,即 = = ,解得t= ,BP= ,

∴OP=OB﹣BP=5﹣ =

此時(shí)P點(diǎn)坐標(biāo)為( ,0);

綜上所述,P點(diǎn)坐標(biāo)為( ,0)或( ,0).


【解析】(1)利用拋物線的解析式確定對(duì)稱軸為直線x=2,再利用對(duì)稱性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,從而得到A(﹣1,0),B(5,0),然后把A點(diǎn)坐標(biāo)代入y=﹣ [(x﹣2)2+n]可求出n的值;(2)作ND∥y軸交BC于D,如圖2,利用拋物線解析式確定C(0,3),再利用待定系數(shù)法求出直線BC的解析式為y=﹣ x+3,設(shè)N(x,﹣ x2+ x+3),則D(x,﹣ x+3),根據(jù)三角形面積公式,利用SNBC=SNDC+SNDB可得SBCN=﹣ x2+ x,然后利用二次函數(shù)的性質(zhì)求解;(3)先利用勾股定理計(jì)算出BC= ,再分類討論:當(dāng)∠PMB=90°,則∠PMC=90°,△PMC為等腰直角三角形,MP=MC,設(shè)PM=t,則CM=t,MB= ﹣t,證明△BMP∽△BOC,利用相似比可求出BP的長(zhǎng),再計(jì)算OP后可得到P點(diǎn)坐標(biāo);當(dāng)∠MPB=90°,則MP=MC,設(shè)PM=t,則CM=t,MB= ﹣t,證明△BMP∽△BCO,利用相似比可求出BP的長(zhǎng),再計(jì)算OP后可得到P點(diǎn)坐標(biāo).本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì);會(huì)運(yùn)用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形的性質(zhì);掌握相似三角形的判定,能運(yùn)用相似比計(jì)算線段的長(zhǎng)或表示線段之間的關(guān)系;學(xué)會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問(wèn)題.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)和比例線段的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減;如果選用同一長(zhǎng)度單位量得兩條線段a,b的長(zhǎng)度分別為m,n,那么就說(shuō)這兩條線段的比是a/b=m/n,或?qū)懗蒩:b=m:n才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣6與x軸交于點(diǎn)A(﹣6,0),B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線BD與拋物線交于點(diǎn)D,點(diǎn)D與點(diǎn)C關(guān)于該拋物線的對(duì)稱軸對(duì)稱.

(1)連接CD,求拋物線的表達(dá)式和線段CD的長(zhǎng)度;
(2)在線段BD下方的拋物線上有一點(diǎn)P,過(guò)點(diǎn)P作PM∥x軸,PN∥y軸,分別交BD于點(diǎn)M,N.當(dāng)△MPN的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時(shí),統(tǒng)計(jì)中常用各組的組中值代表各組的實(shí)際數(shù)據(jù),把各組的頻數(shù)看作相應(yīng)組中值的權(quán),請(qǐng)你依據(jù)以上知識(shí),解決下面的實(shí)際問(wèn)題.
為了解5路公共汽車的運(yùn)營(yíng)情況,公交部門統(tǒng)計(jì)了某天5路公共汽車每個(gè)運(yùn)行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計(jì)圖:

(1)求A組對(duì)應(yīng)扇形圓心角的度數(shù),并寫(xiě)出這天載客量的中位數(shù)所在的組;
(2)求這天5路公共汽車平均每班的載客量;
(3)如果一個(gè)月按30天計(jì)算,請(qǐng)估計(jì)5路公共汽車一個(gè)月的總載客量,并把結(jié)果用科學(xué)記數(shù)法表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式:a0=1;a2a3=a5;22=;35+24÷8×1=0;x2+x2=2x2,其中正確的是(  )

A、①②③B、①③⑤

C②③④D、②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識(shí)的增強(qiáng),越來(lái)越多的人喜歡騎自行車出行,也給自行車商家?guī)?lái)商機(jī).某自行車行經(jīng)營(yíng)的A型自行車去年銷售總額為8萬(wàn)元.今年該型自行車每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價(jià)多少元?
(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過(guò)A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車銷售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E為對(duì)角線AC延長(zhǎng)線上的一點(diǎn).

(1)若四邊形ABCD是菱形,求證:BEDE.

(2)寫(xiě)出(1)的逆命題,并判斷其是真命題還是假命題,若是真命題,給出證明;若是假命題,舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分別是AB、AD、CB上的點(diǎn),AM=CE=1,AN=3,點(diǎn)P從點(diǎn)M出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿折線MB﹣BE向點(diǎn)E運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)N出發(fā),以相同的速度沿折線ND﹣DC﹣CE向點(diǎn)E運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)后,另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)△APQ的面積為S,運(yùn)動(dòng)時(shí)間為t秒,則S與t函數(shù)關(guān)系的大致圖象為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2 , …,按照此規(guī)律繼續(xù)下去,則S9的值為(

A.( 6
B.( 7
C.( 6
D.( 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的5×6的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求解決下列問(wèn)題:

(1)通過(guò)計(jì)算判斷ABC的形狀;

(2)在圖中確定一個(gè)格點(diǎn)D,連接AD、CD,使四邊形ABCD為平行四邊形,并求出 ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案