【題目】已知12箱蘋果,以每箱10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),稱重記錄如下:
+0.2 ,—0.2,+0. 7,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.2,—0.5。
⑴求12箱蘋果的總重量;
⑵若每箱蘋果的重量標(biāo)準(zhǔn)為100.5(千克),則這12箱有幾箱不合乎標(biāo)準(zhǔn)的?
【答案】(1)119.7千克;(2)3箱
【解析】
試題(1)根據(jù)題意得出算式12×10+[(+0.2)+(-0.2)+(+0.7)+(-0.3)+(-0.4)+(+0.6)+0+(-0.1)+(-0.6)+(+0.5)+(-0.2)+(-0.5)],求出即可.
(2)不符合標(biāo)準(zhǔn)的有+0.7,+0.6,-0.6這三箱,即可得出答案.
解:(1)12箱蘋果的總重量是
12×10+[(+0.2)+(0.2)+(+0.7)+(0.3)+(0.4)+(+0.6)+0+(0.1)+(0.6)+(+0.5)+(0.2)+(0.5)]
=119.7(千克),
答:12箱蘋果的總重量是119.7千克.
(2)∵每箱蘋果的重量標(biāo)準(zhǔn)為10±0.5(千克),
∴+0.7,+0.6,0.6的不符合標(biāo)準(zhǔn),
∴這12箱不合乎標(biāo)準(zhǔn)的有3箱.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將三張形狀、大小完全相同的平行四邊形透明紙片分別放在方格紙中,方格紙中的每個小正方形的邊長均為1,并且平行四邊形 紙片的每個頂點與小正方形的頂點重合(如圖①、圖②、圖③).
圖②矩形(正方形)
,
分別在圖①、圖②、圖③中,經(jīng)過平行四邊形紙片的任意一個頂點畫一條裁剪線,沿此裁剪線將平行四邊形紙片裁成兩部分,并把這兩部分重新拼成符合下列要求的幾何圖形.
要求:
(1)在左邊的平行四邊形紙片中畫一條裁剪線,然后在右邊相對應(yīng)的方格紙中,按實際大小畫出所拼成的符合要求的幾何圖形.
(2)裁成的兩部分在拼成幾何圖形時要互不重疊且不留空隙.
(3)所畫出的幾何圖形的各頂點必須與小正方形的頂點重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是菱形的對角線,分別是邊的中點,連接,,則下列結(jié)論錯誤的是( )
A. B. C. 四邊形是菱形D. 四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正整數(shù)1,2,3,4,2016排列成如圖所示的形式.
(1)用一個矩形隨意框住4個數(shù),把其中最小的數(shù)記為,另三個數(shù)用含式子表示出來,當(dāng)被框住的4個數(shù)之和等于418時,值是多少?
(2)被框住的4個數(shù)之和能否等于724?如果能,請求出此時x值;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣為了更好保障居民飲用水安全,環(huán)保局決定購10臺污水處理設(shè)備,現(xiàn)有A、B兩種型號的設(shè)備,價格與每臺日處理污水的能力見下表.
(1)若縣環(huán)保局購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為有哪幾種方案.
(2)在(1)的條件下,每日要求處理污水量不低于2040噸,為了節(jié)約資金,請設(shè)計“一個最省錢”的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進行溝通的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解決下列問題.
(1)[-4.5]=_____;<3.5>=________;
(2)若[x]=2,則x的取值范圍是________;若<y>=-1,則y的取值范圍是_______.
(3)若,則x為_________.
(4)已知x、y滿足方程組,求x、y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家的住房結(jié)構(gòu)平面圖,(單位:米),裝修房子時,他打算將臥室以外的部分都鋪上地磚,
(1)若鋪地磚的價格為80元/平方米,那么購買地磚需要花多少錢?(用代數(shù)式表示);
(2)已知房屋的高度為3米,現(xiàn)在想要在客廳和臥室的墻壁上貼上壁紙,那么需要多少平方米的壁紙(門窗所占面積忽略不計)?(用代數(shù)式表示);
(3)若x=4,y=5,且每平方米地磚的價格是90元,每平方米壁紙的價格是15元,那么,在這兩項裝修中,小明共要花費多少錢?(各種小的損耗不計).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com