【題目】如圖,拋物線y=ax2+2x﹣3x軸交于A、B兩點(diǎn),且B(1,0)

(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);

(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);

3)如圖2,已知直線y=x分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Qy軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個(gè)最大值;若不存在,請說明理由.

【答案】1A點(diǎn)坐標(biāo)為(﹣30);(2);P點(diǎn)坐標(biāo)為(, );(3QD為腰的等腰三角形的面積最大值為

【解析】試題分析:(1)把B點(diǎn)的坐標(biāo)代入拋物線的解析式,求出a的值即可,令y=0,解方程求得x的值,即可得點(diǎn)A的坐標(biāo);(2)當(dāng)點(diǎn)Px軸上方時(shí),連接APy軸于點(diǎn)B′,可證△OBP≌△OB′P,可求得B′坐標(biāo),利用待定系數(shù)法可求得直線AP的解析式,聯(lián)立直線y=x,可求得P點(diǎn)坐標(biāo);當(dāng)點(diǎn)Px軸下方時(shí),同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的內(nèi)部,可知此時(shí)沒有滿足條件的點(diǎn)P;(3)過QQH⊥DE于點(diǎn)H,由直線CF的解析式可求得點(diǎn)C、F的坐標(biāo),結(jié)合條件可求得tan∠QDH,可分別用DQ表示出QHDH的長,分DQ=DEDQ=QE兩種情況,分別用DQ的長表示出△QDE的面積,再設(shè)出點(diǎn)Q的坐標(biāo),利用二次函數(shù)的性質(zhì)可求得△QDE的面積的最大值.

試題解析:

1)把B(1,0)代入y=ax2+2x﹣3,

可得a+2﹣3=0,解得a=1,

∴拋物線解析式為y=x2+2x﹣3,

y=0,可得x2+2x﹣3=0,解得x=1x=﹣3,

A點(diǎn)坐標(biāo)為(﹣3,0);

(2)若y=x平分∠APB,則∠APO=BPO,

如圖1,若P點(diǎn)在x軸上方,PAy軸交于點(diǎn)B′,

由于點(diǎn)P在直線y=x上,可知∠POB=POB′=45°,

在△BPO和△B′PO,

∠POB=∠PCB/,OP=OP,∠BPO=∠B/PO,

∴△BPO≌△B′PO(ASA),

BO=B′O=1,

設(shè)直線AP解析式為y=kx+b,把A、B′兩點(diǎn)坐標(biāo)代入可得

,解得

∴直線AP解析式為y=x+1,

聯(lián)立,解得,

P點(diǎn)坐標(biāo)為(, );

P點(diǎn)在x軸下方時(shí),同理可得△BOP≌△B′OP,

∴∠BPO=B′PO,

又∠B′PO在∠APO的內(nèi)部,

∴∠APO≠∠BPO,即此時(shí)沒有滿足條件的P點(diǎn),

綜上可知P點(diǎn)坐標(biāo)為(, );

(3)如圖2,作QHCF,交CF于點(diǎn)H,

CFy=x,

∴可求得C,0),F0,),

tanOFC==,

DQy軸,

∴∠QDH=MFD=OFC,

tanHDQ=,

不妨設(shè)DQ=t,DH=t,HQ=t,

∵△QDE是以DQ為腰的等腰三角形,

∴若DQ=DE,則SDEQ=DEHQ=×t×t=t2,

DQ=QE,則SDEQ=DEHQ=×2DHHQ=×t×t=t2,

t2t2

∴當(dāng)DQ=QE時(shí)△DEQ的面積比DQ=DE時(shí)大.

設(shè)Q點(diǎn)坐標(biāo)為(x,x2+2x3),則Dx, x),

Q點(diǎn)在直線CF的下方,

DQ=t=xx2+2x3=x2x+,

當(dāng)x=時(shí),tmax=3,

SDEQmax=t2=,

即以QD為腰的等腰三角形的面積最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,ABC是等邊三角形,點(diǎn)D是邊BC上任意一點(diǎn)(不與BC重合),點(diǎn)E在邊AC上,∠ADE=60°,∠BAD與∠CDE有怎樣的數(shù)量關(guān)系,并給予證明.

2)如圖②,在ABC中,AB=AC,點(diǎn)D是邊BC上一點(diǎn)(不與BC重合), ADE=B,點(diǎn)E在邊AC.CE=BD=3,BC=8,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D在△ABC的邊BC上,DC=2BD,連接AD與△ABC的中線BE交于點(diǎn)F,連接CF,若△ABC的面積為24,則△AEF的面積為( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了文明在我身邊攝影比賽.已知每幅參賽作品成績記為 ().校方從600幅參賽作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計(jì)了它們的成績,并繪制了如下不完整的統(tǒng)計(jì)圖表.

根據(jù)以上信息解答下列問題:

1)統(tǒng)計(jì)表中的值為;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若80分以上(含80分)的作品將被組織展評,試估計(jì)全校被展評的作品數(shù)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 在正方形ABCD中.

1)如圖1,點(diǎn)E、F分別在BC、CD上,AE、BF相交于點(diǎn)O,∠AOB=90°,試判斷AEBF的數(shù)量關(guān)系,并說明理由;

2)如圖2,點(diǎn)E、FG、H分別在邊BCCD、DA、AB上,EG、FH相交于點(diǎn)O,∠GOH=90°,且EG=7,求FH的長;

3)如圖3,點(diǎn)E、F分別在BC、CD上,AE、BF相交于點(diǎn)O,∠AOB=90°,若AB=5,圖中陰影部分的面積與正方形的面積之比為45,求△ABO的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE∥BF,AC、BD分別是∠BAD、∠ABC的平分線,且AC交BF于點(diǎn)C,BD交AE于點(diǎn)D,連接CD.求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AB=4,點(diǎn)D是AB的中點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)D出發(fā)(點(diǎn)P、Q不與點(diǎn)D重合),點(diǎn)P沿D→A以1cm/s的速度向中點(diǎn)A運(yùn)動(dòng).點(diǎn)Q沿D→B→D以2cm/s的速度運(yùn)動(dòng).回到點(diǎn)D停止.以PQ為邊在AB上方作正方形PQMN,設(shè)正方形PQMN與△ABC重疊部分的面積為S(cm2),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).

(1)當(dāng)點(diǎn)N在邊AC上時(shí),求t的值.

(2)用含t的代數(shù)式表示PQ的長.

(3)當(dāng)點(diǎn)Q沿D→B運(yùn)動(dòng),正方形PQMN與△ABC重疊部分圖形是五邊形時(shí),求S與t之間的函數(shù)關(guān)系式.

(4)直接寫出正方形PQMN與△ABC重疊部分圖形是軸對稱圖形時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(頂點(diǎn)都是格點(diǎn)),將ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到AB1C1

(1)在正方形網(wǎng)格中,作出AB1C1;(不要求寫作法)

(2)設(shè)網(wǎng)格小正方形的邊長為1cm,用陰影表示出旋轉(zhuǎn)過程中線段BC所掃過的圖形,然后求出它的面積.(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有大小相同的2個(gè)紅球和2個(gè)綠球.

1)先從袋中摸出1個(gè)球后放回,混合均勻后再摸出1個(gè)球.

求第一次摸到綠球,第二次摸到紅球的概率;

求兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率;

2)先從袋中摸出1個(gè)球后不放回,再摸出1個(gè)球,則兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率是多少?請直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案