【題目】某花圃用花盆培育某種花苗,經(jīng)過實(shí)驗(yàn)發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時(shí),平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達(dá)到10元,每盆應(yīng)該植多少株?

【答案】4株或者5株.

【解析】

試題分析:由已知假設(shè)每盆花苗增加x株,則每盆花苗有(x+3)株,得出平均單株盈利為(3﹣0.5x)元,由題意得(x+3)(3﹣0.5x)=10求出即可.

試題解析:解:設(shè)每盆花苗增加x株,則每盆花苗有(x+3)株,平均單株盈利為:(3﹣0.5x)元,由題意得:(x+3)(3﹣0.5x)=10.

化簡(jiǎn),整理,的

解這個(gè)方程,得,,則3+1=4,2+3=5.

答:每盆應(yīng)植4株或者5株.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬達(dá)旅行社為吸引市民組團(tuán)去黃山風(fēng)景區(qū)旅游,推出了如下的收費(fèi)標(biāo)準(zhǔn):

宿州高鐵新區(qū)組織員工去黃山風(fēng)景區(qū)旅游,共支付給萬達(dá)旅行社旅游費(fèi)用27 000元,請(qǐng)問該單位這次共有多少員工去黃山風(fēng)景區(qū)旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象交軸、軸分別于兩點(diǎn),交直線。

1)求點(diǎn)的坐標(biāo);

2)若,求的值;

3)在(2)的條件下,是線段上一點(diǎn),軸于,交,若,求點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.

組別

正確字?jǐn)?shù)x

人數(shù)

A

0x8

10

B

8x16

15

C

16x24

25

D

24x32

m

E

32x40

n

根據(jù)以上信息完成下列問題:

1)統(tǒng)計(jì)表中的m  n  ,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是  ;

3)已知該校共有900名學(xué)生,如果聽寫正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽寫比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng).

(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?

(2)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值;若不存在,請(qǐng)說明理由;

(3)OPD為等腰三角形時(shí),寫出點(diǎn)P的坐標(biāo)(不必寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:在ABC中AC=BC=2,C=90°,將一塊等腰三角形板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn)三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn)。圖,是旋轉(zhuǎn)三角板得到的圖形中的3種情況。研究:

1三角板ABC繞點(diǎn)P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合圖加以證明。

2三角板ABC繞點(diǎn)P旋轉(zhuǎn)PBE是否能為等腰三角形?若能,指出所有情況即寫出PBE為等腰三角形時(shí)CE的長(zhǎng);若不能,請(qǐng)說明理由。不用

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校團(tuán)委為積極參與陶行知杯.全國書法大賽現(xiàn)場(chǎng)決賽向?qū)W校學(xué)生征集書畫作品,今年3月份舉行了書畫比賽初賽初賽成績(jī)?cè)u(píng)定為A,B,CD,E五個(gè)等級(jí).該校七年級(jí)書法班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問題

(1)該校七年級(jí)書法班共有 名學(xué)生;扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)扇形的圓心角等于 并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)A等級(jí)的4名學(xué)生中有2名男生,2名女生現(xiàn)從中任意選取2名學(xué)生參加陶行知杯.全國書法大賽現(xiàn)場(chǎng)決賽,請(qǐng)你用列表法或畫樹狀圖的方法求出恰好選到1名男生和1名女生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形中,,點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng). 分別從同時(shí)出發(fā),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)則另一動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),

1)求為何值時(shí),為等腰三角形?

2)是否存在某一時(shí)刻,使點(diǎn)在線段的垂直平分線上?

3)點(diǎn)在運(yùn)動(dòng)的過程中,是否存在某時(shí)刻, 直線的周長(zhǎng)分為兩部分?若存在,求出,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解甲、乙兩家快遞公司比較合適,甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi),乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.

(1)當(dāng)x>1時(shí),請(qǐng)分別直接寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;

(2)在(1)的條件下,小明選擇哪家快遞公司更省錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案