【題目】如圖,已知直線 與x軸、y軸相交于P、Q兩點,與y=的圖像相交于A(-2,m)、B(1,n)兩點,連接OA、OB. 給出下列結(jié)論: k1k2<0;m+n=0; SAOP= SBOQ不等式k1x+b>的解集是x<-2或0<x<1,其中正確的結(jié)論的序號是 .

【答案】②③④.

【解析】

試題分析:由直線 的圖像在二、四象限,知k1<0;y=的圖像在二、四象限,知k2<0;因此k1k2>0,所以錯誤;A,B兩點在y=的圖像上,故將A(-2,m)、B(1,n)代入,得m=,n= k2;從而得出m+n=0,故正確;令x=0,則y=b,所以Q(0,b),則SBOQ=×1×|b|= -b;將A(-2,m)、B(1,n)分別代入,解得k1=,所以y=x+b;令y=0,則x=-b,所以P(-b,0),則SAOP=×|-2|×|-b|= -b;所以SAOP= SBOQ,故正確;由圖像知,在A點左邊,不等式k1x+b的圖像在的圖像的上邊,故滿足k1x+b>;在Q點與A點之間,不等式k1x+b的圖像在的圖像的上邊,故滿足k1x+b>;因此不等式k1x+b>的解集是x<-2或0<x<1. 正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0).

(1)求拋物線的解析式;

(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;

(3)若點Q為拋物線的對稱軸上的一個動點,試指出△QAB為等腰三角形的點Q一共有幾個?并請求出其中某一個點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】事件A:某人上班乘車,剛到車站車就到了;事件B:擲一枚骰子,向上一面的點數(shù)不大于6.則正確的說法是( 。
A.只有事件A是隨機事件
B.只有事件B是隨機事件
C.都是隨機事件
D.都不是隨機事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的有理數(shù)填在相應(yīng)的大括號里:(★友情提示:將各數(shù)用逗號分開)

15, ,0, 30,0.15,128, +20,2.6

正數(shù)集合{ ﹜;

負(fù)數(shù)集合﹛;

整數(shù)集合﹛ 

非負(fù)數(shù)集合﹛

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各式因式分解:

13xmn)﹣6ynm

2)(xy34xy

3)(x+1)(x9+8x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,EF是對角線BD上的兩點且BE=DF,聯(lián)結(jié)AE,CF

求證:AE=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示0.00000041=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若⊙O的半徑為R,直線l與⊙O有公共點,若圓心到直線l的距離為d,則d與R的大小關(guān)系是( ).

A. d>R B. d<R C. d≥R D. d≤R

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式不能使用平方差公式的是(
A.(2a+b)(2a﹣b)
B.(﹣2a+b)(b﹣2a)
C.(﹣2a+b)(﹣2a﹣b)
D.(2a﹣b)﹣(2a﹣b)

查看答案和解析>>

同步練習(xí)冊答案