【題目】按指定的方法解下列方程:
(1)2x2-5x-4=0(配方法);
(2)3(x-2)+x2-2x=0(因式分解法);
(3)(a2-b2)x2-4abx=a2-b2(a2≠b2)(公式法).
【答案】(1)x1=,x2=;(2)x1=2,x2=-3;(3)x1=,x2=-.
【解析】
(1)根據(jù)用配方法解一元二次方程的步驟:移常數(shù)項到方程的右邊、將二次項的系數(shù)化為1,再將方程的左邊配方(方程兩邊同時加上一次項系數(shù)一般的平方),然后利用直接開平方法求解.(2)觀察方程的特點:右邊為0,左邊可以分解因式,因此利用因式分解法解方程即可.(3)觀察方程的特點,利用一元二次方程的求根公式法解此方程.
(1)∵2x2-5x-4=0,∴2x2-5x=4,
∴x2- x=2,
∴x2- x+ =2+ ,
∴(x- )2= ,
解得:x1= ,x2= ;
(2)∵3(x-2)+x2-2x=0,∴3(x-2)+x(x-2)=0,
∴(x-2)(3+x)=0,
即x-2=0或3+x=0,
解得:x1=2,x2=-3;
(3)∵(a2-b2)x2-4abx=a2-b2(a2≠b2),∴(a2-b2)x2-4abx-(a2-b2)=0,
∴a=a2-b2 , b=-4ab,c=-(a2-b2)=b2-a2 ,
∴△=b2-4ac=(-4ab)2-4×(a2-b2)(b2-a2)=4(a2+b2)2 ,
∴x= ,
解得:x1= = ,x2=- .
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+c的對稱軸為x=2,且過點C(0,3)
(1)求此拋物線的解析式;
(2)證明:該拋物線恒在直線y=﹣2x+1上方.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片放入以所在直線為軸,邊上一點為坐標原點的平面直角坐標系中,連結(jié)。將紙片沿折疊,點恰好落在邊上點處,若,則點的坐標為________________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(﹣3,6),并與x軸交于點B(﹣1,0)和點C,與y軸交于點E,頂點為P,對稱軸與x軸交于點D
(Ⅰ)求這個二次函數(shù)的解析式;
(Ⅱ)連接CP,△DCP是什么特殊形狀的三角形?并加以說明;
(Ⅲ)點Q是第一象限的拋物線上一點,且滿足∠QEO=∠BEO,求出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,斜邊AB=5,而直角邊BC,AC之長是一元二次方程x2-(2m-1)x+4(m-1)=0的兩根,則m的值是( )
A. 4 B. -1 C. 4或-1 D. -4或1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點O是等邊三角形ABC內(nèi)一點,∠AOB=110°,∠BOC=α, 以OC為邊作等邊三角形OCD,連接AD.
(1)當α=150°時,試判斷△AOD的形狀,并說明理由;
(2)探究:當a為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交與點M,交BC于點N,連接AN,過點C的切線交AB的延長線于點P.
(1)求證:∠BCP=∠BAN.
(2)若AC=4,PC=3,求MNBC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O是線段AD的中點,分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點E,連接BC.
(1)證明:⊿ABC ≌ ⊿DCB;
(2)求∠AEB的大。
(3)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com