【題目】在菱形ABCD中,∠BAD=120°,射線(xiàn)AP位于該菱形外側(cè),點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連接BE、DE,直線(xiàn)DE與直線(xiàn)AP交于F,連接BF,設(shè)∠PAB=α.
(1)依題意補(bǔ)全圖1;
(2)如圖1,如果0°<α<30°,判斷∠ABF與∠ADF的數(shù)量關(guān)系,并證明;

(3)如圖2,如果30°<α<60°,寫(xiě)出判斷線(xiàn)段DE,BF,DF之間數(shù)量關(guān)系的思路;(可以不寫(xiě)出證明過(guò)程)

(4)如果60°<α<90°,直接寫(xiě)出線(xiàn)段DE,BF,DF之間的數(shù)量關(guān)系.

【答案】
(1)解:如圖1所示:


(2)解:∠ABF=∠ADF.

理由:如圖2所示:連接AE.

∵點(diǎn)B與點(diǎn)E關(guān)于直線(xiàn)PA對(duì)稱(chēng),

∴EA=AB,∠ABF=∠AEF.

∵四邊形ABCD為菱形,

∴AB=AD.

∴AE=AD.

∴∠AEF=∠ADF.

∴∠ABF=∠ADF.


(3)解:DF=ED﹣BF.

理由:如圖3所示:

∵點(diǎn)B與點(diǎn)E關(guān)于PA對(duì)稱(chēng),

∴EF=BF.

又∵DF=ED﹣EF,

∴DF=ED﹣BF.


(4)解:BF=DE+DF.

理由:如圖4所示:

∵點(diǎn)B與點(diǎn)E關(guān)于PA對(duì)稱(chēng),

∴EF=BF.

又∵EF=ED+DF,

∴BF=DE+DF


【解析】(1)根據(jù)題意畫(huà)出圖形;
(2)連接AE,根據(jù)對(duì)稱(chēng)的性質(zhì)可得EA=AB、∠ABF=∠AEF,再由四邊形ABCD為菱形,可得∠AEF=∠ADF,進(jìn)而得出結(jié)論;
(3)根據(jù)對(duì)稱(chēng)的性質(zhì)易得DF=ED﹣BF;
(4)畫(huà)出圖形,根據(jù)對(duì)稱(chēng)的性質(zhì)易得BF=DE+DF.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的性質(zhì)和軸對(duì)稱(chēng)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握菱形的四條邊都相等;菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半;關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形;如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn);兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,HBC邊的中點(diǎn),連結(jié)DH、BE與相交于點(diǎn)G,以下結(jié)論中正確的結(jié)論有(  )

1)△ABC是等腰三角形;(2BFAC;(3BHBDBC1;(4GE2+CE2BG2

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,cosA= ,D為AB上一點(diǎn),且AD:BD=1:2,若BC=3 ,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買(mǎi)一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買(mǎi)十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買(mǎi)隊(duì)服超過(guò)80套,則購(gòu)買(mǎi)足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?

(2)若城區(qū)四校聯(lián)合購(gòu)買(mǎi)100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)裝備所花的費(fèi)用;

(3)假如你是本次購(gòu)買(mǎi)任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買(mǎi)比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn) 經(jīng)過(guò)點(diǎn)A(0,2)和B(1, ).
(1)求該拋物線(xiàn)的表達(dá)式;
(2)已知點(diǎn)C與點(diǎn)A關(guān)于此拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),點(diǎn)D在拋物線(xiàn)上,且點(diǎn)D的橫坐標(biāo)為4,求點(diǎn)C與點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,將拋物線(xiàn)在點(diǎn)A,D之間的部分(含點(diǎn)A,D)記為圖象G,如果圖象G向下平移t(t>0)個(gè)單位后與直線(xiàn)BC只有一個(gè)公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,△ABC中,AE交BC于點(diǎn)D,∠C=∠E,AD:DE=3: 5,AE=8,BD=4,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在線(xiàn)段.點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),速度為2cm/s;同時(shí),點(diǎn)也從點(diǎn)出發(fā)用1s到達(dá)處,并在處停留2s,然后按原速度向點(diǎn)運(yùn)動(dòng),速度為4cm/s.最終,點(diǎn)比點(diǎn)1s到達(dá).設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為s.

(1)線(xiàn)段的長(zhǎng)為 cm;當(dāng)=3s時(shí),兩點(diǎn)之間的距離為 cm;

(2)求線(xiàn)段的長(zhǎng);

(3)兩點(diǎn)同時(shí)出發(fā)至點(diǎn)到達(dá)點(diǎn)處的這段時(shí)間內(nèi),為何值時(shí),兩點(diǎn)相距1 cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“解直角三角形”一章我們學(xué)習(xí)到“銳角的正弦、余弦、正切都是銳角的函數(shù),統(tǒng)稱(chēng)為銳角三角函數(shù)” .
小力根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)銳角的正弦函數(shù)進(jìn)行了探究. 下面是小力的探究過(guò)程,請(qǐng)補(bǔ)充完成:
(1)函數(shù)的定義是:“一般地,在一個(gè)變化的過(guò)程中,有兩個(gè)變量x和y,對(duì)于變量x的每一個(gè)值,變量y都有唯一確定的值和它對(duì)應(yīng),我們就把x稱(chēng)為自變量,y稱(chēng)為因變量,y是x的函數(shù)”.由函數(shù)定義可知,銳角的正弦函數(shù)的自變量是 , 因變量是 , 自變量的取值范圍是
(2)利用描點(diǎn)法畫(huà)函數(shù)的圖象. 小力先上網(wǎng)查到了整銳角的正弦值,如下:
sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383
sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346
sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087
sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931
sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074
sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474
sin19°=0.3255681544571567 sin20°=0.3420201433256687 sin21°=0.35836794954530027
sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015
sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675
sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000
sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027
sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731
sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.6293203910498375
sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582
sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475
sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941
sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708
sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474
sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239
sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386
sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678
sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009
sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.9335804264972017
sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535
sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683
sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057
sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378
sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733
sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738
sin88°=0.9993908270190958 sin89°=0.9998476951563913
①列表(小力選取了10對(duì)數(shù)值);

x

y

②建立平面直角坐標(biāo)系(兩坐標(biāo)軸可視數(shù)值需要分別選取不同長(zhǎng)度做為單位長(zhǎng)度);
③描點(diǎn).在平面直角坐標(biāo)系xOy 中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn);

④連線(xiàn). 根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的一條性質(zhì):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題:

1)(﹣120182π10+(﹣2

2)(2a4)(a+5)﹣2a10

3)(2x+3y)(﹣2x+3y)﹣(x3y2

4)(4x3y6x2y2+12xy3÷2xy

查看答案和解析>>

同步練習(xí)冊(cè)答案